mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
Add Phi-3.5-MoE (#946)
* add phimoe * add phimoe to tunner * add switch_mlp * fix SuScaled args * nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
6731254e76
commit
b5e18ef1e3
218
llms/mlx_lm/models/phimoe.py
Normal file
218
llms/mlx_lm/models/phimoe.py
Normal file
@ -0,0 +1,218 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .su_rope import SuScaledRotaryEmbedding
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str = "phimoe"
|
||||
vocab_size: int = 32064
|
||||
hidden_size: int = 4096
|
||||
intermediate_size: int = 6400
|
||||
num_hidden_layers: int = 32
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 8
|
||||
max_position_embeddings: int = 131072
|
||||
original_max_position_embeddings: int = 4096
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_scaling: Dict[str, Union[float, List[float]]] = None
|
||||
num_local_experts: int = 16
|
||||
num_experts_per_tok: int = 2
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=True)
|
||||
|
||||
self.rope = SuScaledRotaryEmbedding(
|
||||
head_dim,
|
||||
base=args.rope_theta,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
original_max_position_embeddings=args.original_max_position_embeddings,
|
||||
short_factor=args.rope_scaling["short_factor"],
|
||||
long_factor=args.rope_scaling["long_factor"],
|
||||
short_mscale=args.rope_scaling["short_mscale"],
|
||||
long_mscale=args.rope_scaling["long_mscale"],
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class PhiMoESparseMoeBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.hidden_dim = args.hidden_size
|
||||
self.ffn_dim = args.intermediate_size
|
||||
self.num_experts = args.num_local_experts
|
||||
self.top_k = args.num_experts_per_tok
|
||||
|
||||
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
||||
self.switch_mlp = SwitchGLU(self.hidden_dim, self.ffn_dim, self.num_experts)
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
gates = self.gate(x)
|
||||
|
||||
k = self.top_k
|
||||
inds = mx.stop_gradient(mx.argpartition(-gates, kth=k - 1, axis=-1)[..., :k])
|
||||
scores = mx.take_along_axis(gates, inds, axis=-1)
|
||||
scores = mx.softmax(scores, axis=-1, precise=True)
|
||||
|
||||
y = self.switch_mlp(x, inds)
|
||||
y = (y * scores[..., None]).sum(axis=-2)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class PhiMoEDecoderLayer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.hidden_size = args.hidden_size
|
||||
|
||||
self.self_attn = Attention(args)
|
||||
self.block_sparse_moe = PhiMoESparseMoeBlock(args)
|
||||
self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm(
|
||||
args.hidden_size, eps=args.rms_norm_eps
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
residual = x
|
||||
hidden_states = self.input_layernorm(x)
|
||||
hidden_states = self.self_attn(hidden_states, mask=mask, cache=cache)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class PhiMoEModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [PhiMoEDecoderLayer(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model = PhiMoEModel(args)
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=True)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
def sanitize(self, weights):
|
||||
if "model.layers.0.block_sparse_moe.experts.0.w1.weight" not in weights:
|
||||
return weights
|
||||
for l in range(self.args.num_hidden_layers):
|
||||
prefix = f"model.layers.{l}"
|
||||
for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
|
||||
for k in ["weight", "scales", "biases"]:
|
||||
if f"{prefix}.block_sparse_moe.experts.0.{n}.{k}" in weights:
|
||||
to_join = [
|
||||
weights.pop(
|
||||
f"{prefix}.block_sparse_moe.experts.{e}.{n}.{k}"
|
||||
)
|
||||
for e in range(self.args.num_local_experts)
|
||||
]
|
||||
weights[f"{prefix}.block_sparse_moe.switch_mlp.{m}.{k}"] = (
|
||||
mx.stack(to_join)
|
||||
)
|
||||
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
@ -16,6 +16,8 @@ class SuScaledRotaryEmbedding(nn.Module):
|
||||
original_max_position_embeddings: int = 4096,
|
||||
short_factor: Union[List[float], float] = 1.0,
|
||||
long_factor: Union[List[float], float] = 1.0,
|
||||
short_mscale: float = None,
|
||||
long_mscale: float = None,
|
||||
):
|
||||
"""
|
||||
Phi3Su Scaled Rotary Embedding layer for Phi-3 models.
|
||||
@ -37,12 +39,14 @@ class SuScaledRotaryEmbedding(nn.Module):
|
||||
long_factor (float or list[float], optional): List of scaling
|
||||
factors for sequences of length greater than
|
||||
``original_max_position_embeddings``. Default: ``1.0``.
|
||||
short_mscale (float, optional): Scale the input prior to embedding.
|
||||
long_mscale (float, optional): Scale the input prior to embedding.
|
||||
"""
|
||||
super().__init__()
|
||||
freqs = base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
||||
self._freqs = mx.array(long_factor, dtype=mx.float32) * freqs
|
||||
self.original_max_position_embeddings = original_max_position_embeddings
|
||||
self.scale = math.sqrt(
|
||||
self.scale = long_mscale or math.sqrt(
|
||||
1
|
||||
+ math.log(max_position_embeddings / original_max_position_embeddings)
|
||||
/ math.log(original_max_position_embeddings)
|
||||
|
@ -96,6 +96,7 @@ def linear_to_lora_layers(
|
||||
"stablelm",
|
||||
"qwen2",
|
||||
"qwen2_moe",
|
||||
"phimoe",
|
||||
"gemma",
|
||||
"gemma2",
|
||||
"starcoder2",
|
||||
@ -104,7 +105,7 @@ def linear_to_lora_layers(
|
||||
"deepseek",
|
||||
]:
|
||||
keys = set(["self_attn.q_proj", "self_attn.v_proj"])
|
||||
if model.model_type == "mixtral":
|
||||
if model.model_type in ["mixtral", "phimoe"]:
|
||||
keys.add("block_sparse_moe.gate")
|
||||
if model.model_type == "qwen2_moe":
|
||||
keys.add("mlp.gate")
|
||||
|
Loading…
Reference in New Issue
Block a user