Added Keyword Spotting Transformer + SpeechCommands example (#123)

* Added Keyword Transformer + SpeechCommands

* minor fixes in README

* some updates / simplifications

* nits

* fixed kwt skip connections

* readme + format

* updated acknowledgements

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Sarthak Yadav
2023-12-19 23:17:48 +01:00
committed by GitHub
parent ebbb7083cc
commit b6e62caf2e
5 changed files with 453 additions and 0 deletions

168
speechcommands/main.py Normal file
View File

@@ -0,0 +1,168 @@
import argparse
import time
import kwt
import mlx.nn as nn
import mlx.data as dx
import mlx.core as mx
import mlx.optimizers as optim
from mlx.data.features import mfsc
from mlx.data.datasets import load_speechcommands
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"--arch",
type=str,
default="kwt1",
choices=[f"kwt{d}" for d in [1, 2, 3]],
help="model architecture",
)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only")
def prepare_dataset(batch_size, split, root=None):
def normalize(x):
return (x - x.mean()) / x.std()
data = load_speechcommands(split=split, root=root)
data_iter = (
data.squeeze("audio")
.key_transform(
"audio",
mfsc(
40,
16000,
frame_size_ms=30,
frame_stride_ms=10,
high_freq=7600,
low_freq=20,
),
)
.key_transform("audio", normalize)
.shuffle()
.batch(batch_size)
)
return data_iter
def eval_fn(model, inp, tgt):
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
def train_epoch(model, train_iter, optimizer, epoch):
def train_step(model, inp, tgt):
output = model(inp)
loss = mx.mean(nn.losses.cross_entropy(output, tgt))
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
return loss, acc
train_step_fn = nn.value_and_grad(model, train_step)
losses = []
accs = []
samples_per_sec = []
model.train(True)
for batch_counter, batch in enumerate(train_iter):
x = mx.array(batch["audio"])
y = mx.array(batch["label"])
tic = time.perf_counter()
(loss, acc), grads = train_step_fn(model, x, y)
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
toc = time.perf_counter()
loss = loss.item()
acc = acc.item()
losses.append(loss)
accs.append(acc)
throughput = x.shape[0] / (toc - tic)
samples_per_sec.append(throughput)
if batch_counter % 25 == 0:
print(
" | ".join(
(
f"Epoch {epoch:02d} [{batch_counter:03d}]",
f"Train loss {loss:.3f}",
f"Train acc {acc:.3f}",
f"Throughput: {throughput:.2f} samples/second",
)
)
)
mean_tr_loss = mx.mean(mx.array(losses))
mean_tr_acc = mx.mean(mx.array(accs))
samples_per_sec = mx.mean(mx.array(samples_per_sec))
return mean_tr_loss, mean_tr_acc, samples_per_sec
def test_epoch(model, test_iter):
model.train(False)
accs = []
throughput = []
for batch_counter, batch in enumerate(test_iter):
x = mx.array(batch["audio"])
y = mx.array(batch["label"])
tic = time.perf_counter()
acc = eval_fn(model, x, y)
accs.append(acc.item())
toc = time.perf_counter()
throughput.append(x.shape[0] / (toc - tic))
mean_acc = mx.mean(mx.array(accs))
mean_throughput = mx.mean(mx.array(throughput))
return mean_acc, mean_throughput
def main(args):
mx.random.seed(args.seed)
model = getattr(kwt, args.arch)()
print("Number of params: {:0.04f} M".format(model.num_params() / 1e6))
optimizer = optim.SGD(learning_rate=args.lr, momentum=0.9, weight_decay=1e-4)
train_data = prepare_dataset(args.batch_size, "train")
val_data = prepare_dataset(args.batch_size, "validation")
best_params = None
best_acc = 0.0
best_epoch = 0
for epoch in range(args.epochs):
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
print(
" | ".join(
(
f"Epoch: {epoch}",
f"avg. Train loss {tr_loss.item():.3f}",
f"avg. Train acc {tr_acc.item():.3f}",
f"Throughput: {throughput.item():.2f} samples/sec",
)
)
)
val_acc, val_throughput = test_epoch(model, val_data)
print(
f"Epoch: {epoch} | Val acc {val_acc.item():.3f} | Throughput: {val_throughput.item():.2f} samples/sec"
)
if val_acc >= best_acc:
best_acc = val_acc
best_epoch = epoch
best_params = model.parameters()
print(f"Testing best model from epoch {best_epoch}")
model.update(best_params)
test_data = prepare_dataset(args.batch_size, "test")
test_acc, _ = test_epoch(model, test_data)
print(f"Test acc -> {test_acc.item():.3f}")
if __name__ == "__main__":
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
main(args)