mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-03 06:54:33 +08:00
mistral
This commit is contained in:
118
mistral/test.py
Normal file
118
mistral/test.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import unittest
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_map
|
||||
|
||||
import mistral
|
||||
|
||||
|
||||
class TestMistral(unittest.TestCase):
|
||||
def test_model(self):
|
||||
vocab_size = 100
|
||||
L = 32
|
||||
args = mistral.ModelArgs(
|
||||
dim=128,
|
||||
n_layers=2,
|
||||
head_dim=32,
|
||||
hidden_dim=256,
|
||||
n_heads=4,
|
||||
n_kv_heads=4,
|
||||
norm_eps=1e-3,
|
||||
vocab_size=vocab_size,
|
||||
)
|
||||
|
||||
model = mistral.Mistral(args)
|
||||
inputs = mx.random.randint(0, vocab_size, (L,))
|
||||
logits, cache = model(inputs[None])
|
||||
self.assertEqual(logits.shape, [1, L, vocab_size])
|
||||
self.assertEqual(logits.dtype, mx.float32)
|
||||
self.assertEqual(len(cache), args.n_layers)
|
||||
|
||||
params = tree_map(lambda p: p.astype(mx.float16), model.parameters())
|
||||
model.update(params)
|
||||
logits, _ = model(inputs[None])
|
||||
self.assertEqual(logits.dtype, mx.float16)
|
||||
|
||||
def test_generate(self):
|
||||
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
|
||||
prompt = mx.array(tokenizer.encode("This is a test"))
|
||||
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(30))]
|
||||
mx.eval(tokens)
|
||||
tokens = [t.item() for t in tokens]
|
||||
expected = [
|
||||
302,
|
||||
272,
|
||||
11843,
|
||||
11837,
|
||||
1587,
|
||||
28723,
|
||||
851,
|
||||
349,
|
||||
865,
|
||||
264,
|
||||
1369,
|
||||
28723,
|
||||
13,
|
||||
13,
|
||||
3381,
|
||||
456,
|
||||
654,
|
||||
264,
|
||||
1353,
|
||||
11843,
|
||||
28725,
|
||||
368,
|
||||
682,
|
||||
347,
|
||||
2240,
|
||||
767,
|
||||
298,
|
||||
511,
|
||||
28723,
|
||||
13,
|
||||
]
|
||||
self.assertEqual(tokens, expected)
|
||||
|
||||
def benchmark(self):
|
||||
import time
|
||||
|
||||
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
|
||||
prompt = mx.random.randint(0, model.vocab_size, (128,))
|
||||
|
||||
# warmup
|
||||
for _ in range(2):
|
||||
generator = mistral.generate(prompt, model)
|
||||
mx.eval(next(generator))
|
||||
|
||||
tic = time.time()
|
||||
its = 5
|
||||
for _ in range(its):
|
||||
generator = mistral.generate(prompt, model)
|
||||
mx.eval(next(generator))
|
||||
toc = time.time()
|
||||
tps = its * prompt.size / (toc - tic)
|
||||
print(f"Prompt processing: {tps:.2f} tokens per second")
|
||||
|
||||
# warmup
|
||||
for _ in range(2):
|
||||
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(101))]
|
||||
mx.eval(tokens)
|
||||
|
||||
time_total = 0.0
|
||||
its = 2
|
||||
for _ in range(its):
|
||||
generator = mistral.generate(prompt, model)
|
||||
mx.eval(next(generator))
|
||||
tic = time.time()
|
||||
tokens = [t for t, _ in zip(generator, range(100))]
|
||||
mx.eval(tokens)
|
||||
time_total += time.time() - tic
|
||||
|
||||
tps = len(tokens) * its / time_total
|
||||
print(f"Token generation: {tps:.3f} tokens per second")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user