mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
Fixes
This commit is contained in:
parent
8f8f9b6991
commit
b8fee34f24
@ -91,10 +91,8 @@ class FeedForward(nn.Module):
|
|||||||
class MOEFeedForward(nn.Module):
|
class MOEFeedForward(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
if args.moe is None:
|
if args.moe is None:
|
||||||
raise ValueError("args.moe must not be None for MOEFeedForward")
|
raise ValueError("args.moe must not be None for MOEFeedForward")
|
||||||
|
|
||||||
self.num_experts = args.moe["num_experts"]
|
self.num_experts = args.moe["num_experts"]
|
||||||
self.num_experts_per_tok = args.moe["num_experts_per_tok"]
|
self.num_experts_per_tok = args.moe["num_experts_per_tok"]
|
||||||
self.experts = [FeedForward(args) for _ in range(self.num_experts)]
|
self.experts = [FeedForward(args) for _ in range(self.num_experts)]
|
||||||
@ -103,23 +101,27 @@ class MOEFeedForward(nn.Module):
|
|||||||
def __call__(self, x) -> mx.array:
|
def __call__(self, x) -> mx.array:
|
||||||
ne = self.num_experts_per_tok
|
ne = self.num_experts_per_tok
|
||||||
orig_shape = x.shape
|
orig_shape = x.shape
|
||||||
x = x.reshape(-1, x.shape[-1])
|
x_flat = x.reshape(-1, x.shape[-1])
|
||||||
|
batch_size = x_flat.shape[0]
|
||||||
|
|
||||||
gates = self.gate(x)
|
gates = self.gate(x_flat)
|
||||||
inds = mx.argpartition(-gates, kth=ne - 1, axis=-1)[:, :ne]
|
inds = mx.argpartition(-gates, kth=ne - 1, axis=-1)[:, :ne]
|
||||||
scores = mx.softmax(
|
scores = mx.softmax(
|
||||||
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
|
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
|
||||||
axis=-1,
|
axis=-1,
|
||||||
).astype(gates.dtype)
|
).astype(gates.dtype)
|
||||||
|
|
||||||
y = []
|
final_output = mx.zeros((batch_size, x.shape[-1]), dtype=x.dtype)
|
||||||
for xt, st, it in zip(x, scores, inds.tolist()):
|
|
||||||
yt = mx.concatenate([self.experts[e](xt)[:, None] for e in it], axis=-1)
|
|
||||||
yt = (yt * st).sum(axis=-1)
|
|
||||||
y.append(yt[None, :])
|
|
||||||
y = mx.concatenate(y)
|
|
||||||
|
|
||||||
return y.reshape(orig_shape)
|
for i in range(batch_size):
|
||||||
|
item_experts = inds[i].tolist()
|
||||||
|
item_scores = scores[i]
|
||||||
|
|
||||||
|
for j, expert_idx in enumerate(item_experts):
|
||||||
|
expert_output = self.experts[expert_idx](x_flat[i])
|
||||||
|
final_output = final_output.at[i].add(expert_output * item_scores[j])
|
||||||
|
|
||||||
|
return final_output.reshape(orig_shape)
|
||||||
|
|
||||||
|
|
||||||
class MOETransformerBlock(nn.Module):
|
class MOETransformerBlock(nn.Module):
|
||||||
|
Loading…
Reference in New Issue
Block a user