mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 10:41:18 +08:00
generation works! trying training now
This commit is contained in:
parent
c1634ce81b
commit
b9c57cd429
@ -1,14 +1,11 @@
|
|||||||
# Copyright © 2024 Apple Inc.
|
|
||||||
|
|
||||||
import math
|
import math
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from typing import Tuple, Union
|
from typing import Tuple, Union
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
from .base import BaseModelArgs
|
|
||||||
|
|
||||||
# python -m mlx_lm.generate --model rokyang/mamba2-130m-hf --prompt "hello how are you."
|
from .base import BaseModelArgs
|
||||||
|
from .cache import MambaCache
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModelArgs(BaseModelArgs):
|
class ModelArgs(BaseModelArgs):
|
||||||
@ -24,7 +21,7 @@ class ModelArgs(BaseModelArgs):
|
|||||||
n_groups: int
|
n_groups: int
|
||||||
use_bias: bool
|
use_bias: bool
|
||||||
use_conv_bias: bool
|
use_conv_bias: bool
|
||||||
initializer_range: float
|
initializer_range: float
|
||||||
residual_in_fp32: bool
|
residual_in_fp32: bool
|
||||||
time_step_min: float
|
time_step_min: float
|
||||||
time_step_max: float
|
time_step_max: float
|
||||||
@ -47,21 +44,6 @@ class ModelArgs(BaseModelArgs):
|
|||||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||||
|
|
||||||
|
|
||||||
class Mamba2Cache:
|
|
||||||
def __init__(self):
|
|
||||||
self.cache = [None, None]
|
|
||||||
|
|
||||||
def __setitem__(self, idx, value):
|
|
||||||
self.cache[idx] = value
|
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
|
||||||
return self.cache[idx]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def state(self):
|
|
||||||
return self.cache
|
|
||||||
|
|
||||||
|
|
||||||
class MambaRMSNormGated(nn.Module):
|
class MambaRMSNormGated(nn.Module):
|
||||||
def __init__(self, hidden_size, eps=1e-6):
|
def __init__(self, hidden_size, eps=1e-6):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -74,7 +56,7 @@ class MambaRMSNormGated(nn.Module):
|
|||||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||||
return self.weight * hidden_states
|
return self.weight * hidden_states
|
||||||
|
|
||||||
|
|
||||||
class DepthWiseConv1d(nn.Module):
|
class DepthWiseConv1d(nn.Module):
|
||||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||||
@ -109,9 +91,9 @@ class DepthWiseConv1d(nn.Module):
|
|||||||
y = y + self.bias
|
y = y + self.bias
|
||||||
|
|
||||||
return y, x[:, -K + 1 :, :]
|
return y, x[:, -K + 1 :, :]
|
||||||
|
|
||||||
|
|
||||||
|
class Mamba2Block(nn.Module):
|
||||||
class Mamba2Mixer(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
@ -124,35 +106,36 @@ class Mamba2Mixer(nn.Module):
|
|||||||
self.head_dim = args.hidden_size // args.num_heads
|
self.head_dim = args.hidden_size // args.num_heads
|
||||||
self.n_groups = args.n_groups
|
self.n_groups = args.n_groups
|
||||||
|
|
||||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
# projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
|
||||||
self.conv1d = DepthWiseConv1d(
|
projection_size = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||||
in_channels=self.conv_dim,
|
|
||||||
out_channels=self.conv_dim,
|
|
||||||
bias=args.use_conv_bias,
|
|
||||||
kernel_size=args.conv_kernel,
|
|
||||||
groups=self.conv_dim,
|
|
||||||
padding=args.conv_kernel - 1
|
|
||||||
)
|
|
||||||
|
|
||||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
|
||||||
self.in_proj = nn.Linear(
|
self.in_proj = nn.Linear(
|
||||||
self.hidden_size,
|
args.hidden_size,
|
||||||
projection_size,
|
projection_size,
|
||||||
bias=args.use_bias
|
bias=args.use_bias
|
||||||
)
|
)
|
||||||
|
|
||||||
self.A_log = mx.zeros(self.num_heads)
|
# self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||||
self.D = mx.ones(self.num_heads)
|
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
||||||
self.dt_bias = mx.zeros(self.num_heads)
|
self.conv1d = DepthWiseConv1d(
|
||||||
|
in_channels=self.conv_dim,
|
||||||
|
out_channels=self.conv_dim,
|
||||||
|
kernel_size=args.conv_kernel,
|
||||||
|
bias=args.use_conv_bias,
|
||||||
|
groups=self.conv_dim,
|
||||||
|
padding=args.conv_kernel - 1
|
||||||
|
)
|
||||||
|
|
||||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon)
|
self.A_log = mx.zeros(args.num_heads)
|
||||||
|
self.D = mx.ones((args.num_heads,))
|
||||||
|
self.dt_bias = mx.zeros(args.num_heads)
|
||||||
|
|
||||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
|
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||||
|
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||||
|
|
||||||
def ssm_step(self, x, state, dt_proj):
|
def ssm_step(self, x, state, dt):
|
||||||
A = -mx.exp(self.A_log)
|
A = -mx.exp(self.A_log)
|
||||||
D = self.D
|
D = self.D
|
||||||
delta = nn.softplus(dt_proj + self.dt_bias)
|
dt = nn.softplus(dt + self.dt_bias)
|
||||||
|
|
||||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
||||||
|
|
||||||
@ -160,13 +143,13 @@ class Mamba2Mixer(nn.Module):
|
|||||||
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
||||||
C = C.reshape(batch_size, -1, self.state_size)
|
C = C.reshape(batch_size, -1, self.state_size)
|
||||||
|
|
||||||
delta = delta.reshape(batch_size, self.num_heads, 1)
|
dt = dt.reshape(batch_size, self.num_heads, 1)
|
||||||
A = A.reshape(1, self.num_heads, 1)
|
A = A.reshape(1, self.num_heads, 1)
|
||||||
|
|
||||||
if state is None:
|
if state is None:
|
||||||
new_state = delta * B
|
new_state = dt * B
|
||||||
else:
|
else:
|
||||||
new_state = delta * (B + state * mx.exp(delta * A))
|
new_state = dt * (B + state * mx.exp(dt * A))
|
||||||
|
|
||||||
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
||||||
y = y + D * x[:, :self.num_heads]
|
y = y + D * x[:, :self.num_heads]
|
||||||
@ -180,26 +163,31 @@ class Mamba2Mixer(nn.Module):
|
|||||||
outputs = []
|
outputs = []
|
||||||
for t in range(T):
|
for t in range(T):
|
||||||
xt = x[:, t, :]
|
xt = x[:, t, :]
|
||||||
xz = self.in_proj(xt)
|
zxbcdt = self.in_proj(xt)
|
||||||
|
|
||||||
x_t, z_t, dt_proj = mx.split(
|
z, xBC, dt = mx.split(
|
||||||
xz,
|
zxbcdt,
|
||||||
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
# indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
||||||
|
indices_or_sections=[
|
||||||
|
self.intermediate_size,
|
||||||
|
self.intermediate_size + 2 * self.state_size,
|
||||||
|
self.num_heads
|
||||||
|
],
|
||||||
axis=-1
|
axis=-1
|
||||||
)
|
)
|
||||||
|
|
||||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
# Use the new DepthWiseConv1d with caching
|
||||||
x_t = conv_out.squeeze(1)
|
conv_out, cache[0] = self.conv1d(mx.expand_dims(z, 1), cache[0])
|
||||||
x_t = nn.silu(x_t)
|
z = conv_out.squeeze(1)
|
||||||
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
|
z = nn.silu(z)
|
||||||
z_t = nn.silu(z_t)
|
y_t, cache[1] = self.ssm_step(z, cache[1], dt)
|
||||||
|
xBC = nn.silu(xBC)
|
||||||
|
|
||||||
# Element-wise multiplication
|
# Element-wise multiplication
|
||||||
output_t = y_t[:, :, None] * z_t[:, None, :]
|
output_t = y_t[:, :, None] * xBC[:, None, :]
|
||||||
|
|
||||||
# Sum across the second dimension to match the intermediate_size
|
output_t = self.norm(output_t)
|
||||||
output_t = output_t.sum(axis=1)
|
output_t = output_t.sum(axis=1)
|
||||||
|
|
||||||
output_t = self.out_proj(output_t)
|
output_t = self.out_proj(output_t)
|
||||||
outputs.append(output_t)
|
outputs.append(output_t)
|
||||||
|
|
||||||
@ -207,10 +195,10 @@ class Mamba2Mixer(nn.Module):
|
|||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
class Mamba2Block(nn.Module):
|
class ResidualBlock(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.mixer = Mamba2Mixer(args)
|
self.mixer = Mamba2Block(args)
|
||||||
self.norm = nn.RMSNorm(args.hidden_size)
|
self.norm = nn.RMSNorm(args.hidden_size)
|
||||||
|
|
||||||
def __call__(self, x: mx.array, cache):
|
def __call__(self, x: mx.array, cache):
|
||||||
@ -222,24 +210,16 @@ class Mamba2(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)]
|
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||||
|
|
||||||
def __call__(
|
def __call__(self, x: mx.array, cache):
|
||||||
self,
|
x = self.embeddings(x)
|
||||||
inputs: mx.array,
|
|
||||||
cache=None
|
|
||||||
):
|
|
||||||
hidden_states = self.embeddings(inputs)
|
|
||||||
|
|
||||||
if cache is None:
|
if cache is None:
|
||||||
cache = Mamba2Cache(len(self.layers))
|
cache = [None] * len(self.layers)
|
||||||
|
for layer, c in zip(self.layers, cache):
|
||||||
for i, layer in enumerate(self.layers):
|
x = layer(x, c)
|
||||||
hidden_states = layer(hidden_states, cache[i])
|
return self.norm_f(x)
|
||||||
|
|
||||||
hidden_states = self.norm_f(hidden_states)
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
class Model(nn.Module):
|
||||||
@ -247,7 +227,10 @@ class Model(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
self.model_type = args.model_type
|
self.model_type = args.model_type
|
||||||
|
|
||||||
self.backbone = Mamba2(args)
|
self.backbone = Mamba2(args)
|
||||||
|
# self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||||
|
|
||||||
if not args.tie_word_embeddings:
|
if not args.tie_word_embeddings:
|
||||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
@ -261,19 +244,16 @@ class Model(nn.Module):
|
|||||||
else:
|
else:
|
||||||
logits = self.lm_head(x)
|
logits = self.lm_head(x)
|
||||||
|
|
||||||
print(logits)
|
|
||||||
print(logits.shape)
|
|
||||||
|
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
def sanitize(self, weights):
|
def sanitize(self, weights):
|
||||||
for k, v in weights.items():
|
for k, v in weights.items():
|
||||||
if "conv1d.weight" in k and v.ndim == 3:
|
if "conv1d.weight" in k and v.ndim == 3:
|
||||||
weights[k] = v.moveaxis(2, 1)
|
weights[k] = v.moveaxis(2, 1)
|
||||||
return weights
|
return weights
|
||||||
|
|
||||||
def make_cache(self, batch_size: int = 1):
|
def make_cache(self):
|
||||||
return [Mamba2Cache() for _ in range(len(self.layers))]
|
return [MambaCache() for _ in range(len(self.layers))]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def layers(self):
|
def layers(self):
|
||||||
|
@ -1,246 +1,411 @@
|
|||||||
|
"""
|
||||||
|
mamba2-minimal
|
||||||
|
==============
|
||||||
|
|
||||||
|
A minimal, single-file implementation of the Mamba-2 model in PyTorch.
|
||||||
|
|
||||||
import math
|
> **Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality**
|
||||||
|
> Authors: Tri Dao, Albert Gu
|
||||||
|
> Paper: https://arxiv.org/abs/2405.21060
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Union
|
from typing import Iterable, NamedTuple, TypeAlias, cast
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
|
from torch import LongTensor, Tensor, nn
|
||||||
|
|
||||||
|
Device: TypeAlias = str | torch.device | None
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Mamba2Config:
|
class Mamba2Config:
|
||||||
d_model: int # D
|
d_model: int # model dimension (D)
|
||||||
n_layers: int
|
n_layer: int = 24 # number of Mamba-2 layers in the language model
|
||||||
d_head: int # todo : plutot n_heads non ?
|
d_state: int = 128 # state dimension (N)
|
||||||
d_state: int = 64 # N in paper/comments
|
d_conv: int = 4 # convolution kernel size
|
||||||
expand_factor: int = 2 # E in paper/comments
|
expand: int = 2 # expansion factor (E)
|
||||||
d_conv: int = 4
|
headdim: int = 64 # head dimension (P)
|
||||||
n_groups: int = 1# todo : ??
|
chunk_size: int = 64 # matrix partition size (Q)
|
||||||
|
vocab_size: int = 50277
|
||||||
A_init_range: tuple = (1, 16)
|
pad_vocab_size_multiple: int = 16
|
||||||
dt_min: float = 0.001
|
|
||||||
dt_max: float = 0.1
|
|
||||||
dt_init_floor: float = 1e-4
|
|
||||||
dt_limit: tuple = (0.0, float("inf"))
|
|
||||||
conv_init = None
|
|
||||||
|
|
||||||
learnable_init_states: bool = False
|
|
||||||
activation: str = "swish" # "swish" or "silu"
|
|
||||||
|
|
||||||
rms_norm_eps: float = 1e-5
|
|
||||||
base_std: float = 0.02
|
|
||||||
|
|
||||||
bias: bool = False
|
|
||||||
conv_bias: bool = True
|
|
||||||
|
|
||||||
mup: bool = False
|
|
||||||
mup_base_width: float = 128 # width=d_model
|
|
||||||
|
|
||||||
chunk_size: int = 256
|
|
||||||
use_mem_eff_path: bool = True
|
|
||||||
dtype=None
|
|
||||||
device=None
|
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
self.d_inner = self.expand_factor * self.d_model # E*D = ED in comments
|
self.d_inner = self.expand * self.d_model
|
||||||
self.n_heads = self.d_inner // self.d_head
|
assert self.d_inner % self.headdim == 0
|
||||||
assert self.d_inner % self.d_head == 0
|
self.nheads = self.d_inner // self.headdim
|
||||||
|
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
||||||
|
self.vocab_size += (
|
||||||
|
self.pad_vocab_size_multiple
|
||||||
|
- self.vocab_size % self.pad_vocab_size_multiple
|
||||||
|
)
|
||||||
|
|
||||||
assert (self.d_inner / self.d_head) % 8 == 0, "requierement of causal_conv1d"
|
|
||||||
|
|
||||||
# muP
|
class InferenceCache(NamedTuple):
|
||||||
if self.mup:
|
conv_state: Tensor # (batch, d_inner + 2 * d_state, d_conv)
|
||||||
self.mup_width_mult = self.d_model / self.mup_base_width
|
ssm_state: Tensor # (batch, nheads, headdim, d_state)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def alloc(batch_size: int, args: Mamba2Config, device: Device = None):
|
||||||
|
return InferenceCache(
|
||||||
|
torch.zeros(
|
||||||
|
batch_size, args.d_inner + 2 * args.d_state, args.d_conv, device=device
|
||||||
|
),
|
||||||
|
torch.zeros(
|
||||||
|
batch_size, args.nheads, args.headdim, args.d_state, device=device
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Mamba2LMHeadModel(nn.Module):
|
||||||
|
def __init__(self, args: Mamba2Config, device: Device = None):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
self.backbone = nn.ModuleDict(
|
||||||
|
dict(
|
||||||
|
embedding=nn.Embedding(args.vocab_size, args.d_model, device=device),
|
||||||
|
layers=nn.ModuleList(
|
||||||
|
[
|
||||||
|
nn.ModuleDict(
|
||||||
|
dict(
|
||||||
|
mixer=Mamba2(args, device=device),
|
||||||
|
norm=RMSNorm(args.d_model, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
for _ in range(args.n_layer)
|
||||||
|
]
|
||||||
|
),
|
||||||
|
norm_f=RMSNorm(args.d_model, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.lm_head = nn.Linear(
|
||||||
|
args.d_model, args.vocab_size, bias=False, device=device
|
||||||
|
)
|
||||||
|
self.lm_head.weight = self.backbone.embedding.weight
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, input_ids: LongTensor, h: list[InferenceCache] | list[None] | None = None
|
||||||
|
) -> tuple[LongTensor, list[InferenceCache]]:
|
||||||
|
"""
|
||||||
|
Arguments
|
||||||
|
input_ids: (batch, seqlen) tokens from `EleutherAI/gpt-neox-20b` tokenizer
|
||||||
|
h: hidden states for inference step. If present the constant-time
|
||||||
|
(wrt sequence length) inference path will be taken, input_ids
|
||||||
|
should have shape (batch, 1) containing the next batch of prompt
|
||||||
|
token.
|
||||||
|
|
||||||
|
Return (logits, h)
|
||||||
|
logits: (batch, seqlen, vocab_size)
|
||||||
|
h: updated inference cache after processing `input_ids`
|
||||||
|
"""
|
||||||
|
seqlen = input_ids.shape[1]
|
||||||
|
|
||||||
|
if h is None:
|
||||||
|
h = [None for _ in range(self.args.n_layer)]
|
||||||
|
|
||||||
|
x = self.backbone.embedding(input_ids)
|
||||||
|
for i, layer in enumerate(self.backbone.layers):
|
||||||
|
y, h[i] = layer.mixer(layer.norm(x), h[i])
|
||||||
|
x = y + x
|
||||||
|
|
||||||
|
x = self.backbone.norm_f(x)
|
||||||
|
logits = self.lm_head(x)
|
||||||
|
return logits[:, :seqlen], cast(list[InferenceCache], h)
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
input_ids: LongTensor,
|
||||||
|
max_new_length: int = 20,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
top_k: int = 50,
|
||||||
|
top_p: float = 1.0,
|
||||||
|
eos_token_id: int = 0,
|
||||||
|
) -> Iterable[tuple[int, list[InferenceCache]]]:
|
||||||
|
prefix, tokens = input_ids[:-1], input_ids[-1:].unsqueeze(0)
|
||||||
|
|
||||||
|
# Process prompt
|
||||||
|
# The input sequence to forward (non-inference path) must have length multiple that of chunk_size.
|
||||||
|
# We split out excess tokens so that n_chunked tokens can be processed by one forward call and
|
||||||
|
# process the rest in multiple inference steps.
|
||||||
|
n_chunked = (prefix.shape[0] // self.args.chunk_size) * self.args.chunk_size
|
||||||
|
if n_chunked > 0:
|
||||||
|
_, h = self(prefix[:n_chunked].unsqueeze(0), None)
|
||||||
|
else:
|
||||||
|
h = [
|
||||||
|
InferenceCache.alloc(1, self.args, device=self.device)
|
||||||
|
for _ in range(self.args.n_layer)
|
||||||
|
]
|
||||||
|
for i in range(n_chunked, prefix.shape[0]):
|
||||||
|
_, h = self(prefix[i : i + 1].unsqueeze(0), h)
|
||||||
|
|
||||||
|
# Generate
|
||||||
|
for _ in range(max_new_length):
|
||||||
|
with torch.no_grad():
|
||||||
|
out, h = self(tokens, h)
|
||||||
|
logits = out[0, -1]
|
||||||
|
if temperature != 1.0:
|
||||||
|
logits = logits / temperature
|
||||||
|
if top_k > 0:
|
||||||
|
indices_to_remove = logits < torch.topk(logits, k=top_k)[0][-1]
|
||||||
|
logits[indices_to_remove] = -torch.inf
|
||||||
|
if top_p < 1.0:
|
||||||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||||
|
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||||
|
sorted_indices_to_remove = cum_probs > 0.5
|
||||||
|
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
|
||||||
|
sorted_indices_to_remove[0] = False
|
||||||
|
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
||||||
|
logits[indices_to_remove] = -torch.inf
|
||||||
|
probs = F.softmax(logits, dim=-1)
|
||||||
|
next_token = torch.multinomial(probs, num_samples=1)
|
||||||
|
if next_token.item() == eos_token_id:
|
||||||
|
return
|
||||||
|
tokens = next_token.unsqueeze(0)
|
||||||
|
yield cast(int, next_token.item()), h
|
||||||
|
|
||||||
|
|
||||||
class Mamba2(nn.Module):
|
class Mamba2(nn.Module):
|
||||||
def __init__(self, config: Mamba2Config):
|
def __init__(self, args: Mamba2Config, device: Device = None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.device = device
|
||||||
|
|
||||||
self.config = config
|
# Order: (z, x, B, C, dt)
|
||||||
|
d_in_proj = 2 * args.d_inner + 2 * args.d_state + args.nheads
|
||||||
|
self.in_proj = nn.Linear(args.d_model, d_in_proj, bias=False, device=device)
|
||||||
|
|
||||||
self.layers = nn.ModuleList([ResidualBlock(config) for _ in range(config.n_layers)])
|
conv_dim = args.d_inner + 2 * args.d_state
|
||||||
|
|
||||||
def forward(self, x, caches=None):
|
|
||||||
if caches is None:
|
|
||||||
caches = [None] * self.config.n_layers
|
|
||||||
|
|
||||||
for i, layer in enumerate(self.layers):
|
|
||||||
x, caches[i] = layer(x, caches[i])
|
|
||||||
|
|
||||||
if caches[0] == None:
|
|
||||||
return x
|
|
||||||
else:
|
|
||||||
return x, caches
|
|
||||||
|
|
||||||
class ResidualBlock(nn.Module):
|
|
||||||
def __init__(self, config: Mamba2Config):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.config = config
|
|
||||||
|
|
||||||
self.mixer = Mamba2Block(self.config)
|
|
||||||
self.norm = RMSNorm(self.config.d_model, self.config.rms_norm_eps, self.config.mup)
|
|
||||||
|
|
||||||
def forward(self, x, cache=None):
|
|
||||||
output, cache = self.mixer(self.norm(x), cache)
|
|
||||||
output = output + x
|
|
||||||
return output, cache
|
|
||||||
|
|
||||||
class Mamba2Block(nn.Module):
|
|
||||||
def __init__(self, config: Mamba2Config):
|
|
||||||
super().__init__()
|
|
||||||
factory_kwargs = {"device": config.device, "dtype": config.dtype}
|
|
||||||
|
|
||||||
self.config = config
|
|
||||||
|
|
||||||
# [z, x, B, C, dt]
|
|
||||||
d_in_proj = 2 * self.config.d_inner + 2 * self.config.n_groups * self.config.d_state + self.config.n_heads
|
|
||||||
self.in_proj = nn.Linear(self.config.d_model, d_in_proj, bias=self.config.bias)
|
|
||||||
|
|
||||||
conv_dim = self.config.d_inner + 2 * self.config.n_groups * self.config.d_state
|
|
||||||
self.conv1d = nn.Conv1d(
|
self.conv1d = nn.Conv1d(
|
||||||
in_channels=conv_dim,
|
in_channels=conv_dim,
|
||||||
out_channels=conv_dim,
|
out_channels=conv_dim,
|
||||||
bias=self.config.conv_bias,
|
kernel_size=args.d_conv,
|
||||||
kernel_size=self.config.d_conv,
|
|
||||||
groups=conv_dim,
|
groups=conv_dim,
|
||||||
padding=self.config.d_conv - 1,
|
padding=args.d_conv - 1,
|
||||||
**factory_kwargs,
|
device=device,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.dt_bias = nn.Parameter(torch.empty(args.nheads, device=device))
|
||||||
|
self.A_log = nn.Parameter(torch.empty(args.nheads, device=device))
|
||||||
|
self.D = nn.Parameter(torch.empty(args.nheads, device=device))
|
||||||
|
self.norm = RMSNorm(args.d_inner, device=device)
|
||||||
|
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=False, device=device)
|
||||||
|
|
||||||
# Initialize log dt bias
|
def forward(self, u: Tensor, h: InferenceCache | None = None):
|
||||||
dt = torch.exp(
|
|
||||||
torch.rand(self.config.n_heads) * (math.log(self.config.dt_max) - math.log(self.config.dt_min))
|
|
||||||
+ math.log(self.config.dt_min)
|
|
||||||
)
|
|
||||||
dt = torch.clamp(dt, min=self.config.dt_init_floor)
|
|
||||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
|
||||||
self.dt_bias = nn.Parameter(inv_dt)
|
|
||||||
assert self.config.A_init_range[0] > 0 and self.config.A_init_range[1] >= self.config.A_init_range[0]
|
|
||||||
A = torch.empty(self.config.n_heads, dtype=torch.float32).uniform_(*self.config.A_init_range)
|
|
||||||
self.A_log = torch.log(A).to(dtype=self.config.dtype)
|
|
||||||
self.D = nn.Parameter(torch.ones(self.config.n_heads, device=self.config.device))
|
|
||||||
|
|
||||||
self.norm = RMSNormGated(self.config.d_inner, eps=1e-5, norm_before_gate=False)
|
|
||||||
|
|
||||||
self.out_proj = nn.Linear(self.config.d_inner, self.config.d_model, bias=self.config.bias)
|
|
||||||
|
|
||||||
def forward(self, u, cache=None, seq_idx=None):
|
|
||||||
"""
|
"""
|
||||||
u: (B, L, D)
|
Arguments
|
||||||
Returns: out : same shape as u
|
u: (batch, seqlen, d_model) input. seqlen should be a multiple of chunk_size.
|
||||||
|
h: hidden states for inference step. Initialized to 0s if not present.
|
||||||
|
|
||||||
|
Return (y, h)
|
||||||
|
y: (batch, seqlen, d_model) output
|
||||||
|
h: updated inference cache after processing `u`
|
||||||
"""
|
"""
|
||||||
|
if h:
|
||||||
|
return self.step(u, h)
|
||||||
|
|
||||||
batch, length, _ = u.shape
|
A = -torch.exp(self.A_log) # (nheads,)
|
||||||
|
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
|
||||||
return_cache = False
|
|
||||||
if cache is not None and length > 1:
|
|
||||||
cache = None
|
|
||||||
return_cache = True
|
|
||||||
|
|
||||||
if cache is not None:
|
|
||||||
out, cache = self.step(u, cache)
|
|
||||||
return out, cache
|
|
||||||
|
|
||||||
zxbcdt = self.in_proj(u) # (B, L, d_in_proj)
|
|
||||||
A = -torch.exp(self.A_log) # (nheads) or (d_inner, d_state)
|
|
||||||
initial_states=repeat(self.init_states, "... -> b ...", b=batch) if self.config.learnable_init_states else None
|
|
||||||
dt_limit_kwargs = {} if self.config.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.config.dt_limit)
|
|
||||||
|
|
||||||
z, xBC, dt = torch.split(
|
z, xBC, dt = torch.split(
|
||||||
zxbcdt,
|
zxbcdt,
|
||||||
[self.config.d_inner, self.config.d_inner + 2 * self.config.n_groups * self.config.d_state, self.config.n_heads],
|
[
|
||||||
dim=-1
|
self.args.d_inner,
|
||||||
|
self.args.d_inner + 2 * self.args.d_state,
|
||||||
|
self.args.nheads,
|
||||||
|
],
|
||||||
|
dim=-1,
|
||||||
)
|
)
|
||||||
dt = F.softplus(dt + self.dt_bias) # (B, L, nheads)
|
dt = F.softplus(dt + self.dt_bias) # (batch, seqlen, nheads)
|
||||||
|
|
||||||
# 1D Convolution
|
# Pad or truncate xBC seqlen to d_conv
|
||||||
xBC = self.act(self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)) # (B, L, self.d_inner + 2 * n_groups * d_state)
|
conv_state = F.pad(
|
||||||
|
rearrange(xBC, "b l d -> b d l"), (self.args.d_conv - u.shape[1], 0)
|
||||||
|
|
||||||
x, B, C = torch.split(xBC, [self.config.d_inner, self.config.n_groups * self.config.d_state, self.config.n_groups * self.config.d_state], dim=-1)
|
|
||||||
y = mamba_chunk_scan_combined(
|
|
||||||
rearrange(x, "b l (h p) -> b l h p", p=self.config.d_head),
|
|
||||||
dt,
|
|
||||||
A,
|
|
||||||
rearrange(B, "b l (g n) -> b l g n", g=self.config.n_groups),
|
|
||||||
rearrange(C, "b l (g n) -> b l g n", g=self.config.n_groups),
|
|
||||||
chunk_size=self.config.chunk_size,
|
|
||||||
D=self.D,
|
|
||||||
z=None,
|
|
||||||
seq_idx=seq_idx,
|
|
||||||
initial_states=initial_states,
|
|
||||||
**dt_limit_kwargs,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
xBC = silu(
|
||||||
|
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, : u.shape[1], :]
|
||||||
|
) # (batch, seqlen, d_inner + 2 * d_state))
|
||||||
|
x, B, C = torch.split(
|
||||||
|
xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b l (h p) -> b l h p", p=self.args.headdim)
|
||||||
|
y, ssm_state = ssd(
|
||||||
|
x * dt.unsqueeze(-1),
|
||||||
|
A * dt,
|
||||||
|
rearrange(B, "b l n -> b l 1 n"),
|
||||||
|
rearrange(C, "b l n -> b l 1 n"),
|
||||||
|
self.args.chunk_size,
|
||||||
|
device=self.device,
|
||||||
|
)
|
||||||
|
y = y + x * self.D.unsqueeze(-1)
|
||||||
y = rearrange(y, "b l h p -> b l (h p)")
|
y = rearrange(y, "b l h p -> b l (h p)")
|
||||||
|
|
||||||
# Multiply "gate" branch and apply extra normalization layer
|
|
||||||
y = self.norm(y, z)
|
y = self.norm(y, z)
|
||||||
out = self.out_proj(y)
|
y = self.out_proj(y)
|
||||||
return out, cache
|
|
||||||
|
h = InferenceCache(conv_state, ssm_state)
|
||||||
def step(self, u, cache):
|
return y, h
|
||||||
|
|
||||||
|
def step(self, u: Tensor, h: InferenceCache) -> tuple[Tensor, InferenceCache]:
|
||||||
|
"""Take a single inference step for the current input and hidden state
|
||||||
|
|
||||||
|
Unlike attention-based models, RNN-based models (eg Mamba) does not need
|
||||||
|
to look back at all the past tokens to generate a new token. Instead a
|
||||||
|
hidden state (initialized to 0s initially) is updated for each input and
|
||||||
|
passed to the next inference step. This means that the total inference
|
||||||
|
time is linear with respect to the sequence length instead of quadratic
|
||||||
|
in attention's case.
|
||||||
|
|
||||||
|
Arguments
|
||||||
|
u: (batch, 1, d_model)
|
||||||
|
h: initial/running hidden state
|
||||||
|
|
||||||
|
Return (y, h)
|
||||||
|
y: (batch, 1, d_model)
|
||||||
|
h: updated hidden state
|
||||||
"""
|
"""
|
||||||
u: (B, 1, D)
|
assert u.shape[1] == 1, "Only one token can be decoded per inference step"
|
||||||
cache: (h_cache, conv_cache)
|
|
||||||
"""
|
|
||||||
|
|
||||||
h_cache, conv_cache = cache
|
|
||||||
|
|
||||||
zxbcdt = self.in_proj(u.squeeze(1)) # (B, 2D)
|
zxbcdt = self.in_proj(u.squeeze(1)) # (batch, d_in_proj)
|
||||||
d_mlp = (zxbcdt.shape[-1] - 2 * self.config.d_inner - 2 * self.config.n_groups * self.config.d_state - self.config.n_heads) // 2
|
z, xBC, dt = torch.split(
|
||||||
z0, x0, z, xBC, dt = torch.split(zxbcdt, [d_mlp, d_mlp, self.config.d_inner, self.config.d_inner + 2 * self.config.n_groups * self.config.d_state, self.config.n_heads], dim=-1)
|
zxbcdt,
|
||||||
|
[
|
||||||
|
self.args.d_inner,
|
||||||
|
self.args.d_inner + 2 * self.args.d_state,
|
||||||
|
self.args.nheads,
|
||||||
|
],
|
||||||
|
dim=-1,
|
||||||
|
)
|
||||||
|
|
||||||
# conv step
|
# Advance convolution input
|
||||||
conv_cache.copy_(torch.roll(conv_cache, shifts=-1, dims=-1)) # update state (B, D, W)
|
h.conv_state.copy_(torch.roll(h.conv_state, shifts=-1, dims=-1))
|
||||||
conv_cache[:, :, -1] = xBC
|
h.conv_state[:, :, -1] = xBC
|
||||||
xBC = torch.sum(conv_cache * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B, D)
|
# Convolution step
|
||||||
if self.conv1d.bias is not None:
|
xBC = torch.sum(
|
||||||
xBC = xBC + self.conv1d.bias
|
h.conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1
|
||||||
xBC = self.act(xBC).to(dtype=x.dtype)
|
)
|
||||||
|
xBC += self.conv1d.bias
|
||||||
x, B, C = torch.split(xBC, [self.config.d_inner, self.config.n_groups * self.config.d_state, self.config.n_groups * self.config.d_state], dim=-1)
|
xBC = silu(xBC)
|
||||||
A = -torch.exp(self.A_log.float()) # (n_heads)
|
|
||||||
|
|
||||||
|
x, B, C = torch.split(
|
||||||
A = repeat(A, "h -> h p n", p=self.config.d_head, n=self.config.d_state).to(dtype=torch.float32)
|
xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
|
||||||
dt = repeat(dt, "b h -> b h p", p=self.config.d_head)
|
)
|
||||||
dt_bias = repeat(self.dt_bias, "h -> h p", p=self.config.d_head)
|
A = -torch.exp(self.A_log) # (nheads,)
|
||||||
D = repeat(self.D, "h -> h p", p=self.config.d_head)
|
|
||||||
B = rearrange(B, "b (g n) -> b g n", g=self.config.n_groups)
|
# SSM step
|
||||||
C = rearrange(C, "b (g n) -> b g n", g=self.config.n_groups)
|
dt = F.softplus(dt + self.dt_bias) # (batch, nheads)
|
||||||
x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.config.d_head)
|
dA = torch.exp(dt * A) # (batch, nheads)
|
||||||
|
x = rearrange(x, "b (h p) -> b h p", p=self.args.headdim)
|
||||||
y = selective_state_update(h_cache, x_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True)
|
dBx = torch.einsum("bh, bn, bhp -> bhpn", dt, B, x)
|
||||||
|
h.ssm_state.copy_(h.ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
|
||||||
|
y = torch.einsum("bhpn, bn -> bhp", h.ssm_state, C)
|
||||||
|
y = y + rearrange(self.D, "h -> h 1") * x
|
||||||
y = rearrange(y, "b h p -> b (h p)")
|
y = rearrange(y, "b h p -> b (h p)")
|
||||||
|
|
||||||
#if self.rmsnorm:
|
|
||||||
y = self.norm(y, z)
|
y = self.norm(y, z)
|
||||||
if d_mlp > 0:
|
y = self.out_proj(y)
|
||||||
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
|
|
||||||
out = self.out_proj(y)
|
return y.unsqueeze(1), h
|
||||||
return out.unsqueeze(1), (h_cache, conv_cache)
|
|
||||||
|
|
||||||
|
def segsum(x: Tensor, device: Device = None) -> Tensor:
|
||||||
|
"""Stable segment sum calculation.
|
||||||
|
|
||||||
|
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
|
||||||
|
|
||||||
|
Source: https://github.com/state-spaces/mamba/blob/219f03c840d5a44e7d42e4e728134834fddccf45/mamba_ssm/modules/ssd_minimal.py#L23-L32
|
||||||
|
"""
|
||||||
|
T = x.size(-1)
|
||||||
|
x = repeat(x, "... d -> ... d e", e=T)
|
||||||
|
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=-1)
|
||||||
|
x = x.masked_fill(~mask, 0)
|
||||||
|
x_segsum = torch.cumsum(x, dim=-2)
|
||||||
|
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=0)
|
||||||
|
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
|
||||||
|
return x_segsum
|
||||||
|
|
||||||
|
|
||||||
|
def ssd(x, A, B, C, chunk_size, initial_states=None, device: Device = None):
|
||||||
|
"""Structed State Space Duality (SSD) - the core of Mamba-2
|
||||||
|
|
||||||
|
This is almost the exact same minimal SSD code from the blog post.
|
||||||
|
|
||||||
|
Arguments
|
||||||
|
x: (batch, seqlen, n_heads, d_head)
|
||||||
|
A: (batch, seqlen, n_heads)
|
||||||
|
B: (batch, seqlen, n_heads, d_state)
|
||||||
|
C: (batch, seqlen, n_heads, d_state)
|
||||||
|
|
||||||
|
Return
|
||||||
|
y: (batch, seqlen, n_heads, d_head)
|
||||||
|
|
||||||
|
Source
|
||||||
|
1. https://tridao.me/blog/2024/mamba2-part3-algorithm/
|
||||||
|
2. https://github.com/state-spaces/mamba/blob/219f03c840d5a44e7d42e4e728134834fddccf45/mamba_ssm/modules/ssd_minimal.py#L34-L78
|
||||||
|
"""
|
||||||
|
assert x.shape[1] % chunk_size == 0
|
||||||
|
|
||||||
|
# Rearrange into chunks
|
||||||
|
# Step 1, 2 and 4 of SSD can be computed in parallel for each chunk across devices (sequence parallel)
|
||||||
|
# This is not implemented and left as an exercise for the reader 😜
|
||||||
|
x, A, B, C = [
|
||||||
|
rearrange(m, "b (c l) ... -> b c l ...", l=chunk_size) for m in (x, A, B, C)
|
||||||
|
]
|
||||||
|
|
||||||
|
A = rearrange(A, "b c l h -> b h c l")
|
||||||
|
A_cumsum = torch.cumsum(A, dim=-1)
|
||||||
|
|
||||||
|
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||||||
|
L = torch.exp(segsum(A, device=device))
|
||||||
|
Y_diag = torch.einsum("bclhn, bcshn, bhcls, bcshp -> bclhp", C, B, L, x)
|
||||||
|
|
||||||
|
# 2. Compute the state for each intra-chunk
|
||||||
|
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||||||
|
decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
|
||||||
|
states = torch.einsum("bclhn, bhcl, bclhp -> bchpn", B, decay_states, x)
|
||||||
|
|
||||||
|
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
|
||||||
|
# (middle term of factorization of off-diag blocks; A terms)
|
||||||
|
if initial_states is None:
|
||||||
|
initial_states = torch.zeros_like(states[:, :1])
|
||||||
|
states = torch.cat([initial_states, states], dim=1)
|
||||||
|
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0)), device=device))
|
||||||
|
new_states = torch.einsum("bhzc, bchpn -> bzhpn", decay_chunk, states)
|
||||||
|
states, final_state = new_states[:, :-1], new_states[:, -1]
|
||||||
|
|
||||||
|
# 4. Compute state -> output conversion per chunk
|
||||||
|
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||||||
|
state_decay_out = torch.exp(A_cumsum)
|
||||||
|
Y_off = torch.einsum("bclhn, bchpn, bhcl -> bclhp", C, states, state_decay_out)
|
||||||
|
|
||||||
|
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||||||
|
Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")
|
||||||
|
|
||||||
|
return Y, final_state
|
||||||
|
|
||||||
|
|
||||||
# taken straight from https://github.com/johnma2006/mamba-minimal/blob/master/model.py
|
|
||||||
class RMSNorm(nn.Module):
|
class RMSNorm(nn.Module):
|
||||||
def __init__(self, d_model: int, eps: float = 1e-5, use_mup: bool = False):
|
def __init__(self, d: int, eps: float = 1e-5, device: Device = None):
|
||||||
|
"""Gated Root Mean Square Layer Normalization
|
||||||
|
|
||||||
|
Paper: https://arxiv.org/abs/1910.07467
|
||||||
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.use_mup = use_mup
|
|
||||||
self.eps = eps
|
self.eps = eps
|
||||||
|
self.weight = nn.Parameter(torch.ones(d, device=device))
|
||||||
|
|
||||||
# https://arxiv.org/abs/2404.05728, RMSNorm gains prevents muTransfer (section 4.2.3)
|
def forward(self, x, z=None):
|
||||||
if not use_mup:
|
if z is not None:
|
||||||
self.weight = nn.Parameter(torch.ones(d_model))
|
x = x * silu(z)
|
||||||
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
||||||
|
|
||||||
if not self.use_mup:
|
def silu(x):
|
||||||
return output * self.weight
|
"""Applies the Sigmoid Linear Unit (SiLU), element-wise.
|
||||||
else:
|
|
||||||
return output
|
Define this manually since torch's version doesn't seem to work on MPS.
|
||||||
|
"""
|
||||||
|
return x * F.sigmoid(x)
|
@ -106,14 +106,16 @@ class Mamba2Block(nn.Module):
|
|||||||
self.head_dim = args.hidden_size // args.num_heads
|
self.head_dim = args.hidden_size // args.num_heads
|
||||||
self.n_groups = args.n_groups
|
self.n_groups = args.n_groups
|
||||||
|
|
||||||
projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
|
# projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
|
||||||
|
projection_size = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||||
self.in_proj = nn.Linear(
|
self.in_proj = nn.Linear(
|
||||||
args.hidden_size,
|
args.hidden_size,
|
||||||
projection_size,
|
projection_size,
|
||||||
bias=args.use_bias
|
bias=args.use_bias
|
||||||
)
|
)
|
||||||
|
|
||||||
self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
# self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||||
|
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
||||||
self.conv1d = DepthWiseConv1d(
|
self.conv1d = DepthWiseConv1d(
|
||||||
in_channels=self.conv_dim,
|
in_channels=self.conv_dim,
|
||||||
out_channels=self.conv_dim,
|
out_channels=self.conv_dim,
|
||||||
@ -130,62 +132,125 @@ class Mamba2Block(nn.Module):
|
|||||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||||
|
|
||||||
def ssm_step(self, x, state, dt):
|
def _ssd(self, x, A, B, C, chunk_size):
|
||||||
|
batch, seq_len, nheads, head_dim = x.shape
|
||||||
|
n_state = B.shape[-1]
|
||||||
|
|
||||||
|
h = mx.zeros((batch, nheads, head_dim, n_state))
|
||||||
|
ys = []
|
||||||
|
|
||||||
|
for i in range(0, seq_len, chunk_size):
|
||||||
|
chunk_size_i = min(chunk_size, seq_len - i)
|
||||||
|
xi = x[:, i:i + chunk_size_i]
|
||||||
|
Bi = B[:, i:i + chunk_size_i]
|
||||||
|
Ci = C[:, i:i + chunk_size_i]
|
||||||
|
|
||||||
|
for t in range(chunk_size_i):
|
||||||
|
h = h * mx.exp(A)[:, None, None]
|
||||||
|
h = h + mx.expand_dims(Bi[:, t], -2) * mx.expand_dims(xi[:, t], -1)
|
||||||
|
y = mx.sum(h * mx.expand_dims(Ci[:, t], -2), axis=-1)
|
||||||
|
ys.append(y)
|
||||||
|
|
||||||
|
y = mx.stack(ys, axis=1)
|
||||||
|
return y, h
|
||||||
|
|
||||||
|
def __call__(self, x: mx.array, cache) -> mx.array:
|
||||||
|
if cache is not None:
|
||||||
|
return self.step(x, cache)
|
||||||
|
|
||||||
A = -mx.exp(self.A_log)
|
A = -mx.exp(self.A_log)
|
||||||
D = self.D
|
zxbcdt = self.in_proj(u)
|
||||||
dt = nn.softplus(dt + self.dt_bias)
|
|
||||||
|
|
||||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
z, xBC, dt = mx.split(
|
||||||
|
zxbcdt,
|
||||||
|
[
|
||||||
|
self.args.d_inner,
|
||||||
|
self.args.d_inner + 2 * self.args.d_state,
|
||||||
|
self.args.nheads,
|
||||||
|
],
|
||||||
|
axis=-1,
|
||||||
|
)
|
||||||
|
|
||||||
batch_size = B.shape[0]
|
dt = mx.softplus(dt + self.dt_bias)
|
||||||
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
|
||||||
C = C.reshape(batch_size, -1, self.state_size)
|
|
||||||
|
|
||||||
dt = dt.reshape(batch_size, self.num_heads, 1)
|
# Use the custom DepthWiseConv1d with cache
|
||||||
A = A.reshape(1, self.num_heads, 1)
|
xBC = self.conv1d(xBC, cache, cache_idx=0)
|
||||||
|
xBC = mx.sigmoid(xBC) * xBC # SiLU activation
|
||||||
|
|
||||||
if state is None:
|
x, B, C = mx.split(
|
||||||
new_state = dt * B
|
xBC,
|
||||||
else:
|
[self.args.d_inner, self.args.d_state, self.args.d_state],
|
||||||
new_state = dt * (B + state * mx.exp(dt * A))
|
axis=-1
|
||||||
|
)
|
||||||
|
|
||||||
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
x = self._reshape_heads(x, True)
|
||||||
y = y + D * x[:, :self.num_heads]
|
B = mx.expand_dims(B, axis=2)
|
||||||
return y, new_state
|
C = mx.expand_dims(C, axis=2)
|
||||||
|
|
||||||
|
y, ssm_state = self._ssd(
|
||||||
|
x * mx.expand_dims(dt, -1),
|
||||||
|
A * dt,
|
||||||
|
B,
|
||||||
|
C,
|
||||||
|
self.args.chunk_size
|
||||||
|
)
|
||||||
|
|
||||||
|
y = y + x * mx.expand_dims(self.D, -1)
|
||||||
|
y = self._reshape_heads(y, False)
|
||||||
|
y = self.norm(y, z)
|
||||||
|
y = self.out_proj(y)
|
||||||
|
|
||||||
def __call__(self, x, cache):
|
if cache is not None:
|
||||||
B, T, D = x.shape
|
cache[1] = ssm_state
|
||||||
if cache is None:
|
|
||||||
cache = [None, None]
|
|
||||||
|
|
||||||
outputs = []
|
return y
|
||||||
for t in range(T):
|
|
||||||
xt = x[:, t, :]
|
|
||||||
zxbcdt = self.in_proj(xt)
|
|
||||||
|
|
||||||
z, xBC, dt = mx.split(
|
|
||||||
zxbcdt,
|
|
||||||
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Use the new DepthWiseConv1d with caching
|
def step(self, x: mx.array, cache) -> mx.array:
|
||||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(z, 1), cache[0])
|
"""Single inference step"""
|
||||||
z = conv_out.squeeze(1)
|
assert x.shape[1] == 1, "Only one token can be decoded per inference step"
|
||||||
z = nn.silu(z)
|
|
||||||
y_t, cache[1] = self.ssm_step(z, cache[1], dt)
|
|
||||||
xBC = nn.silu(xBC)
|
|
||||||
|
|
||||||
# Element-wise multiplication
|
|
||||||
output_t = y_t[:, :, None] * xBC[:, None, :]
|
|
||||||
|
|
||||||
output_t = self.norm(output_t)
|
|
||||||
output_t = output_t.sum(axis=1)
|
|
||||||
output_t = self.out_proj(output_t)
|
|
||||||
outputs.append(output_t)
|
|
||||||
|
|
||||||
output = mx.stack(outputs, axis=1)
|
zxbcdt = self.in_proj(mx.squeeze(x, 1))
|
||||||
return output
|
z, xBC, dt = mx.split(
|
||||||
|
zxbcdt,
|
||||||
|
[
|
||||||
|
self.args.d_inner,
|
||||||
|
self.args.d_inner + 2 * self.args.d_state,
|
||||||
|
self.args.nheads,
|
||||||
|
],
|
||||||
|
axis=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Use the custom DepthWiseConv1d with cache
|
||||||
|
xBC = self.conv1d(xBC, cache, cache_idx=0)
|
||||||
|
xBC = mx.sigmoid(xBC) * xBC # SiLU activation
|
||||||
|
|
||||||
|
x, B, C = mx.split(
|
||||||
|
xBC,
|
||||||
|
[self.args.d_inner, self.args.d_state, self.args.d_state],
|
||||||
|
axis=-1
|
||||||
|
)
|
||||||
|
A = -mx.exp(self.A_log)
|
||||||
|
|
||||||
|
dt = mx.softplus(dt + self.dt_bias)
|
||||||
|
dA = mx.exp(dt * A)
|
||||||
|
|
||||||
|
x = mx.reshape(x, (-1, self.args.nheads, self.args.headdim))
|
||||||
|
|
||||||
|
ssm_state = cache[1]
|
||||||
|
dBx = mx.expand_dims(dt, -1) * mx.expand_dims(B, 1) * mx.expand_dims(x, -1)
|
||||||
|
ssm_state = ssm_state * mx.expand_dims(mx.expand_dims(dA, -1), -1) + dBx
|
||||||
|
|
||||||
|
y = mx.sum(ssm_state * mx.expand_dims(mx.expand_dims(C, 1), 1), axis=-1)
|
||||||
|
y = y + mx.expand_dims(self.D, -1) * x
|
||||||
|
y = mx.reshape(y, (-1, self.args.nheads * self.args.headdim))
|
||||||
|
|
||||||
|
y = self.norm(y, z)
|
||||||
|
y = self.out_proj(y)
|
||||||
|
|
||||||
|
# Update SSM state in cache
|
||||||
|
cache[1] = ssm_state
|
||||||
|
|
||||||
|
return mx.expand_dims(y, 1)
|
||||||
|
|
||||||
|
|
||||||
class ResidualBlock(nn.Module):
|
class ResidualBlock(nn.Module):
|
||||||
|
Loading…
Reference in New Issue
Block a user