mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 10:41:18 +08:00
updates
This commit is contained in:
parent
8aeea10901
commit
c119a7a4a5
@ -2,48 +2,103 @@ import itertools
|
|||||||
import json
|
import json
|
||||||
import types
|
import types
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Union
|
||||||
|
|
||||||
from transformers import PreTrainedTokenizer
|
from transformers import PreTrainedTokenizer
|
||||||
|
|
||||||
|
|
||||||
class DPODataset:
|
class DPODataset:
|
||||||
"""
|
def __init__(
|
||||||
A dataset for DPO (Direct Preference Optimization) training that handles
|
self,
|
||||||
prompt-chosen-rejected triplets in the format:
|
data: List[Dict[str, Union[str, Dict, List]]],
|
||||||
{"system": ..., "prompt": ..., "chosen": ..., "rejected": ...}
|
tokenizer: PreTrainedTokenizer,
|
||||||
"""
|
prompt_key: str = "prompt",
|
||||||
|
chosen_key: str = "chosen",
|
||||||
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer,
|
rejected_key: str = "rejected",
|
||||||
prompt_key: str = "prompt", chosen_key: str = "chosen",
|
system_key: str = None
|
||||||
rejected_key: str = "rejected", system_key: str = "system"):
|
):
|
||||||
self._chosen_data = []
|
self._chosen_data = []
|
||||||
self._rejected_data = []
|
self._rejected_data = []
|
||||||
|
|
||||||
for d in data:
|
for d in data:
|
||||||
messages = (
|
# Get prompt content, preferring 'prompt' over 'question'
|
||||||
[{"role": "system", "content": d[system_key]}] if system_key and system_key in d else []
|
prompt_content = d.get(prompt_key, d.get("question", ""))
|
||||||
)
|
|
||||||
messages.append({"role": "user", "content": d[prompt_key]})
|
|
||||||
|
|
||||||
# Apply template once for each response type
|
if system_key and system_key in d:
|
||||||
base_messages = messages.copy()
|
base_messages = [{"role": "system", "content": d[system_key]}]
|
||||||
chosen_messages = base_messages + [{"role": "assistant", "content": d[chosen_key]}]
|
chosen_messages = base_messages + [{"role": "user", "content": prompt_content}]
|
||||||
rejected_messages = base_messages + [{"role": "assistant", "content": d[rejected_key]}]
|
rejected_messages = base_messages + [{"role": "user", "content": prompt_content}]
|
||||||
|
|
||||||
|
# Handle chosen messages
|
||||||
|
if isinstance(d[chosen_key], str):
|
||||||
|
chosen_messages.append({"role": "assistant", "content": d[chosen_key]})
|
||||||
|
elif isinstance(d[chosen_key], dict):
|
||||||
|
if "messages" in d[chosen_key]:
|
||||||
|
chosen_messages.extend(d[chosen_key]["messages"])
|
||||||
|
else:
|
||||||
|
chosen_messages.append({"role": "assistant", "content": d[chosen_key].get("content", "")})
|
||||||
|
elif isinstance(d[chosen_key], list):
|
||||||
|
chosen_messages.extend(d[chosen_key])
|
||||||
|
|
||||||
|
# Handle rejected messages
|
||||||
|
if isinstance(d[rejected_key], str):
|
||||||
|
rejected_messages.append({"role": "assistant", "content": d[rejected_key]})
|
||||||
|
elif isinstance(d[rejected_key], dict):
|
||||||
|
if "messages" in d[rejected_key]:
|
||||||
|
rejected_messages.extend(d[rejected_key]["messages"])
|
||||||
|
else:
|
||||||
|
rejected_messages.append({"role": "assistant", "content": d[rejected_key].get("content", "")})
|
||||||
|
elif isinstance(d[rejected_key], list):
|
||||||
|
rejected_messages.extend(d[rejected_key])
|
||||||
|
|
||||||
|
chosen_text = tokenizer.apply_chat_template(chosen_messages)
|
||||||
|
rejected_text = tokenizer.apply_chat_template(rejected_messages)
|
||||||
|
|
||||||
self._chosen_data.append(tokenizer.apply_chat_template(chosen_messages))
|
else:
|
||||||
self._rejected_data.append(tokenizer.apply_chat_template(rejected_messages))
|
# Handle non-system message cases
|
||||||
|
chosen_content = self._extract_content(d[chosen_key])
|
||||||
|
rejected_content = self._extract_content(d[rejected_key])
|
||||||
|
|
||||||
|
chosen_text = tokenizer.apply_chat_template([
|
||||||
|
{"role": "user", "content": prompt_content},
|
||||||
|
{"role": "assistant", "content": chosen_content},
|
||||||
|
])
|
||||||
|
rejected_text = tokenizer.apply_chat_template([
|
||||||
|
{"role": "user", "content": prompt_content},
|
||||||
|
{"role": "assistant", "content": rejected_content},
|
||||||
|
])
|
||||||
|
|
||||||
|
self._chosen_data.append(chosen_text)
|
||||||
|
self._rejected_data.append(rejected_text)
|
||||||
|
|
||||||
|
def _extract_content(self, data):
|
||||||
|
"""Helper method to extract content from various data formats."""
|
||||||
|
if isinstance(data, str):
|
||||||
|
return data
|
||||||
|
elif isinstance(data, dict):
|
||||||
|
if "messages" in data:
|
||||||
|
last_message = data["messages"][-1]
|
||||||
|
return last_message.get("content", last_message.get("messages", ""))
|
||||||
|
return data.get("content", "")
|
||||||
|
elif isinstance(data, list):
|
||||||
|
last_message = data[-1]
|
||||||
|
if isinstance(last_message, dict):
|
||||||
|
if "content" in last_message:
|
||||||
|
return last_message["content"]
|
||||||
|
elif "messages" in last_message:
|
||||||
|
return last_message["messages"]
|
||||||
|
return last_message if isinstance(last_message, str) else ""
|
||||||
|
return ""
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self._chosen_data)
|
||||||
|
|
||||||
def __getitem__(self, idx: int):
|
def __getitem__(self, idx: int):
|
||||||
return {
|
return {
|
||||||
"chosen": self._chosen_data[idx],
|
"chosen": self._chosen_data[idx],
|
||||||
"rejected": self._rejected_data[idx]
|
"rejected": self._rejected_data[idx]
|
||||||
}
|
}
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self._chosen_data)
|
|
||||||
|
|
||||||
|
|
||||||
class Dataset:
|
class Dataset:
|
||||||
"""
|
"""
|
||||||
Light-weight wrapper to hold a dataset.
|
Light-weight wrapper to hold a dataset.
|
||||||
|
Loading…
Reference in New Issue
Block a user