mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-27 19:31:20 +08:00
still generating gibberish
This commit is contained in:
parent
ab4cf1d1cf
commit
c1634ce81b
File diff suppressed because it is too large
Load Diff
@ -106,6 +106,13 @@ class Mamba2Block(nn.Module):
|
|||||||
self.head_dim = args.hidden_size // args.num_heads
|
self.head_dim = args.hidden_size // args.num_heads
|
||||||
self.n_groups = args.n_groups
|
self.n_groups = args.n_groups
|
||||||
|
|
||||||
|
projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
|
||||||
|
self.in_proj = nn.Linear(
|
||||||
|
args.hidden_size,
|
||||||
|
projection_size,
|
||||||
|
bias=args.use_bias
|
||||||
|
)
|
||||||
|
|
||||||
self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||||
self.conv1d = DepthWiseConv1d(
|
self.conv1d = DepthWiseConv1d(
|
||||||
in_channels=self.conv_dim,
|
in_channels=self.conv_dim,
|
||||||
@ -116,15 +123,6 @@ class Mamba2Block(nn.Module):
|
|||||||
padding=args.conv_kernel - 1
|
padding=args.conv_kernel - 1
|
||||||
)
|
)
|
||||||
|
|
||||||
projection_size = args.intermediate_size + self.conv_dim + args.num_heads
|
|
||||||
self.in_proj = nn.Linear(
|
|
||||||
args.hidden_size,
|
|
||||||
projection_size,
|
|
||||||
bias=args.use_bias
|
|
||||||
)
|
|
||||||
|
|
||||||
self.act = nn.SiLU()
|
|
||||||
|
|
||||||
self.A_log = mx.zeros(args.num_heads)
|
self.A_log = mx.zeros(args.num_heads)
|
||||||
self.D = mx.ones((args.num_heads,))
|
self.D = mx.ones((args.num_heads,))
|
||||||
self.dt_bias = mx.zeros(args.num_heads)
|
self.dt_bias = mx.zeros(args.num_heads)
|
||||||
@ -132,10 +130,10 @@ class Mamba2Block(nn.Module):
|
|||||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||||
|
|
||||||
def ssm_step(self, x, state, dt_proj):
|
def ssm_step(self, x, state, dt):
|
||||||
A = -mx.exp(self.A_log)
|
A = -mx.exp(self.A_log)
|
||||||
D = self.D
|
D = self.D
|
||||||
delta = nn.softplus(dt_proj + self.dt_bias)
|
dt = nn.softplus(dt + self.dt_bias)
|
||||||
|
|
||||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
||||||
|
|
||||||
@ -143,13 +141,13 @@ class Mamba2Block(nn.Module):
|
|||||||
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
||||||
C = C.reshape(batch_size, -1, self.state_size)
|
C = C.reshape(batch_size, -1, self.state_size)
|
||||||
|
|
||||||
delta = delta.reshape(batch_size, self.num_heads, 1)
|
dt = dt.reshape(batch_size, self.num_heads, 1)
|
||||||
A = A.reshape(1, self.num_heads, 1)
|
A = A.reshape(1, self.num_heads, 1)
|
||||||
|
|
||||||
if state is None:
|
if state is None:
|
||||||
new_state = delta * B
|
new_state = dt * B
|
||||||
else:
|
else:
|
||||||
new_state = delta * (B + state * mx.exp(delta * A))
|
new_state = dt * (B + state * mx.exp(dt * A))
|
||||||
|
|
||||||
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
||||||
y = y + D * x[:, :self.num_heads]
|
y = y + D * x[:, :self.num_heads]
|
||||||
@ -163,27 +161,26 @@ class Mamba2Block(nn.Module):
|
|||||||
outputs = []
|
outputs = []
|
||||||
for t in range(T):
|
for t in range(T):
|
||||||
xt = x[:, t, :]
|
xt = x[:, t, :]
|
||||||
xz = self.in_proj(xt)
|
zxbcdt = self.in_proj(xt)
|
||||||
|
|
||||||
x_t, z_t, dt_proj = mx.split(
|
z, xBC, dt = mx.split(
|
||||||
xz,
|
zxbcdt,
|
||||||
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
||||||
axis=-1
|
axis=-1
|
||||||
)
|
)
|
||||||
|
|
||||||
# Use the new DepthWiseConv1d with caching
|
# Use the new DepthWiseConv1d with caching
|
||||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
conv_out, cache[0] = self.conv1d(mx.expand_dims(z, 1), cache[0])
|
||||||
x_t = conv_out.squeeze(1)
|
z = conv_out.squeeze(1)
|
||||||
x_t = nn.silu(x_t)
|
z = nn.silu(z)
|
||||||
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
|
y_t, cache[1] = self.ssm_step(z, cache[1], dt)
|
||||||
z_t = nn.silu(z_t)
|
xBC = nn.silu(xBC)
|
||||||
|
|
||||||
# Element-wise multiplication
|
# Element-wise multiplication
|
||||||
output_t = y_t[:, :, None] * z_t[:, None, :]
|
output_t = y_t[:, :, None] * xBC[:, None, :]
|
||||||
|
|
||||||
# Sum across the second dimension to match the intermediate_size
|
output_t = self.norm(output_t)
|
||||||
output_t = output_t.sum(axis=1)
|
output_t = output_t.sum(axis=1)
|
||||||
|
|
||||||
output_t = self.out_proj(output_t)
|
output_t = self.out_proj(output_t)
|
||||||
outputs.append(output_t)
|
outputs.append(output_t)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user