mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 10:41:18 +08:00
still generating gibberish
This commit is contained in:
parent
ab4cf1d1cf
commit
c1634ce81b
@ -1,809 +1,246 @@
|
||||
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange, repeat
|
||||
|
||||
@dataclass
|
||||
class Mamba2Config:
|
||||
d_model: int # D
|
||||
n_layers: int
|
||||
d_head: int # todo : plutot n_heads non ?
|
||||
d_state: int = 64 # N in paper/comments
|
||||
expand_factor: int = 2 # E in paper/comments
|
||||
d_conv: int = 4
|
||||
n_groups: int = 1# todo : ??
|
||||
|
||||
A_init_range: tuple = (1, 16)
|
||||
dt_min: float = 0.001
|
||||
dt_max: float = 0.1
|
||||
dt_init_floor: float = 1e-4
|
||||
dt_limit: tuple = (0.0, float("inf"))
|
||||
conv_init = None
|
||||
|
||||
class Mamba2Cache:
|
||||
"""
|
||||
Arguments:
|
||||
config: Mamba2Config
|
||||
batch_size: int
|
||||
dtype: torch.dtype
|
||||
device: torch.device
|
||||
learnable_init_states: bool = False
|
||||
activation: str = "swish" # "swish" or "silu"
|
||||
|
||||
Attributes:
|
||||
seqlen_offset: int
|
||||
dtype: torch.dtype
|
||||
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
|
||||
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
|
||||
"""
|
||||
rms_norm_eps: float = 1e-5
|
||||
base_std: float = 0.02
|
||||
|
||||
def __init__(
|
||||
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * config.hidden_size)
|
||||
bias: bool = False
|
||||
conv_bias: bool = True
|
||||
|
||||
self.conv_states = {
|
||||
i: torch.zeros(
|
||||
batch_size,
|
||||
self.intermediate_size + 2 * config.n_groups * config.state_size,
|
||||
self.conv_kernel_size,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.ssm_states = {
|
||||
i: torch.zeros(
|
||||
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
mup: bool = False
|
||||
mup_base_width: float = 128 # width=d_model
|
||||
|
||||
def update_conv_state(
|
||||
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
||||
) -> torch.Tensor:
|
||||
conv_state = self.conv_states[layer_idx]
|
||||
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
|
||||
chunk_size: int = 256
|
||||
use_mem_eff_path: bool = True
|
||||
dtype=None
|
||||
device=None
|
||||
|
||||
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
||||
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
||||
self.conv_states[layer_idx].zero_()
|
||||
self.conv_states[layer_idx] += conv_state
|
||||
return self.conv_states[layer_idx]
|
||||
def __post_init__(self):
|
||||
self.d_inner = self.expand_factor * self.d_model # E*D = ED in comments
|
||||
self.n_heads = self.d_inner // self.d_head
|
||||
assert self.d_inner % self.d_head == 0
|
||||
|
||||
def reset(self):
|
||||
self.conv_states.zero_()
|
||||
self.ssm_states.zero_()
|
||||
assert (self.d_inner / self.d_head) % 8 == 0, "requierement of causal_conv1d"
|
||||
|
||||
# muP
|
||||
if self.mup:
|
||||
self.mup_width_mult = self.d_model / self.mup_base_width
|
||||
|
||||
class MambaRMSNormGated(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, config: Mamba2Config):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
self.config = config
|
||||
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
self.layers = nn.ModuleList([ResidualBlock(config) for _ in range(config.n_layers)])
|
||||
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
def forward(self, x, caches=None):
|
||||
if caches is None:
|
||||
caches = [None] * self.config.n_layers
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
x, caches[i] = layer(x, caches[i])
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, config: Mamba2Config, layer_idx: int):
|
||||
if caches[0] == None:
|
||||
return x
|
||||
else:
|
||||
return x, caches
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, config: Mamba2Config):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.ssm_state_size = config.state_size
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * self.hidden_size)
|
||||
self.time_step_rank = int(config.time_step_rank)
|
||||
self.layer_idx = layer_idx
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
self.layer_norm_epsilon = config.layer_norm_epsilon
|
||||
self.rms_norm = config.rms_norm
|
||||
self.config = config
|
||||
|
||||
self.n_groups = config.n_groups
|
||||
self.head_dim = config.head_dim
|
||||
self.chunk_size = config.chunk_size
|
||||
|
||||
self.time_step_limit = config.time_step_limit
|
||||
self.time_step_min = config.time_step_min
|
||||
self.time_step_max = config.time_step_max
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
bias=config.use_conv_bias,
|
||||
kernel_size=config.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=config.conv_kernel - 1,
|
||||
)
|
||||
|
||||
# projection of the input hidden states
|
||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=config.use_bias,
|
||||
)
|
||||
# selective projection used to make dt, B and C input dependant
|
||||
|
||||
# time step projection (discretization)
|
||||
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
||||
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
|
||||
|
||||
# S4D real initialization. These are not discretized!
|
||||
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
||||
A = torch.arange(1, self.num_heads + 1)
|
||||
self.A_log = nn.Parameter(torch.log(A))
|
||||
self.A_log._no_weight_decay = True
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
||||
self.D = nn.Parameter(torch.ones(self.num_heads))
|
||||
self.D._no_weight_decay = True
|
||||
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.use_bias = config.use_bias
|
||||
|
||||
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
dtype = input_states.dtype
|
||||
# Gated MLP's linear projection
|
||||
projected_states = self.in_proj(input_states.squeeze(1))
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||||
_, _, gate, hidden_states, dt = projected_states.split(
|
||||
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
||||
)
|
||||
|
||||
# Convolution sequence transformation
|
||||
if cache_params is not None:
|
||||
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
||||
ssm_state = ssm_state.to(hidden_states.device)
|
||||
if cache_params.seqlen_offset > 0:
|
||||
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
||||
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
||||
# handle batched generation - states are copied through
|
||||
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
else:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
conv_state = nn.functional.pad(
|
||||
hidden_states,
|
||||
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
dtype = hidden_states.dtype
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
else:
|
||||
ssm_state = torch.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
|
||||
device=hidden_states.device, dtype=dtype
|
||||
)
|
||||
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
||||
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
|
||||
A = -torch.exp(self.A_log.float()) # [num_heads]
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||||
# for batched generation
|
||||
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
|
||||
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
|
||||
|
||||
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
|
||||
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
|
||||
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dA = torch.exp(dt[..., None] * A)
|
||||
|
||||
# Discretize B
|
||||
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
|
||||
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
|
||||
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
|
||||
B = B.reshape(batch_size, -1, B.shape[-1])
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dB = dt[..., None] * B[..., None, :]
|
||||
|
||||
# Discretize x into dB
|
||||
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
||||
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
|
||||
dBx = dB * hidden_states[..., None]
|
||||
|
||||
# State calculation
|
||||
cache_params.ssm_states[self.layer_idx].copy_(
|
||||
cache_params.ssm_states[self.layer_idx] * dA + dBx
|
||||
)
|
||||
|
||||
# Subsequent output
|
||||
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
|
||||
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
|
||||
C = C.reshape(batch_size, -1, C.shape[-1])
|
||||
# [bsz, num_heads, head_dim]
|
||||
|
||||
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
|
||||
# Reshape ssm_states to merge the first two dimensions
|
||||
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
|
||||
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
|
||||
y = torch.bmm(ssm_states_reshaped, C_reshaped)
|
||||
y = y.view(batch_size, self.num_heads, self.head_dim)
|
||||
|
||||
# D skip connection
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
|
||||
y = (y + hidden_states * D).to(y.dtype)
|
||||
|
||||
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
||||
y = y.reshape(batch_size, -1)[:, None, ...]
|
||||
else:
|
||||
# begin ssd naive implementation without einsums
|
||||
dt = nn.functional.softplus(dt + self.dt_bias)
|
||||
dt = torch.clamp(dt, self.time_step_min)
|
||||
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
|
||||
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
||||
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
||||
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
|
||||
|
||||
# Discretize x and A
|
||||
hidden_states = hidden_states * dt[..., None]
|
||||
A = A.to(hidden_states.dtype) * dt
|
||||
|
||||
# Rearrange into blocks/chunks
|
||||
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
|
||||
|
||||
|
||||
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
||||
A = A.permute(0, 3, 1, 2)
|
||||
A_cumsum = torch.cumsum(A, dim=-1)
|
||||
|
||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||||
# This is the analog of a causal mask
|
||||
L = torch.exp(segment_sum(A))
|
||||
|
||||
# First, contraction of C and B to get G (attention-weights like)
|
||||
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
|
||||
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
|
||||
|
||||
|
||||
# Step 2: Compute M, equivalent to applying attention mask to weights
|
||||
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
|
||||
M = M_intermediate.sum(dim=-1)
|
||||
|
||||
# Step 3: Compute Y_diag (apply to values)
|
||||
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
|
||||
|
||||
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||||
|
||||
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
||||
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
|
||||
# permute back B * decay states
|
||||
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
|
||||
else:
|
||||
previous_states = torch.zeros_like(states[:, :1])
|
||||
states = torch.cat([previous_states, states], dim=1)
|
||||
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
||||
|
||||
states_permuted = states.permute(0, 2, 1, 3, 4)
|
||||
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
|
||||
new_states = result.permute(0, 2, 1, 3, 4)
|
||||
states, ssm_state = new_states[:, :-1], new_states[:, -1]
|
||||
|
||||
# Compute state -> output conversion per chunk
|
||||
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||||
state_decay_out = torch.exp(A_cumsum)
|
||||
# compute Yoff
|
||||
C_times_states = (C[..., None, :] * states[:, :, None, ...])
|
||||
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
|
||||
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
|
||||
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||||
|
||||
y = Y_diag + Y_off
|
||||
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
||||
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
|
||||
|
||||
y = y + D_residual
|
||||
# Cutting off padded chunks
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len, :, :]
|
||||
y = y.reshape(batch_size, seq_len, -1)
|
||||
if ssm_state is not None and cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
scan_output = self.norm(y, gate)
|
||||
|
||||
# end ssd naive
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
|
||||
return contextualized_states
|
||||
|
||||
|
||||
class Mamba2RMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
self.mixer = Mamba2Block(self.config)
|
||||
self.norm = RMSNorm(self.config.d_model, self.config.rms_norm_eps, self.config.mup)
|
||||
|
||||
def forward(self, x, cache=None):
|
||||
output, cache = self.mixer(self.norm(x), cache)
|
||||
output = output + x
|
||||
return output, cache
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, config, layer_idx):
|
||||
def __init__(self, config: Mamba2Config):
|
||||
super().__init__()
|
||||
factory_kwargs = {"device": config.device, "dtype": config.dtype}
|
||||
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.residual_in_fp32 = config.residual_in_fp32
|
||||
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
||||
if self.residual_in_fp32:
|
||||
residual = residual.to(torch.float32)
|
||||
# [z, x, B, C, dt]
|
||||
d_in_proj = 2 * self.config.d_inner + 2 * self.config.n_groups * self.config.d_state + self.config.n_heads
|
||||
self.in_proj = nn.Linear(self.config.d_model, d_in_proj, bias=self.config.bias)
|
||||
|
||||
hidden_states = self.mixer(
|
||||
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
||||
conv_dim = self.config.d_inner + 2 * self.config.n_groups * self.config.d_state
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=conv_dim,
|
||||
out_channels=conv_dim,
|
||||
bias=self.config.conv_bias,
|
||||
kernel_size=self.config.d_conv,
|
||||
groups=conv_dim,
|
||||
padding=self.config.d_conv - 1,
|
||||
**factory_kwargs,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Mamba2PreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = Mamba2Config
|
||||
base_model_prefix = "backbone"
|
||||
_no_split_modules = ["Mamba2Block"]
|
||||
supports_gradient_checkpointing = True
|
||||
_is_stateful = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, Mamba2Mixer):
|
||||
module.A_log._no_weight_decay = True
|
||||
module.D._no_weight_decay = True
|
||||
|
||||
# Initialize log dt bias
|
||||
dt = torch.exp(
|
||||
torch.rand(self.config.num_heads)
|
||||
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
||||
+ math.log(self.config.time_step_min)
|
||||
).clamp(min=self.config.time_step_floor)
|
||||
|
||||
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
torch.rand(self.config.n_heads) * (math.log(self.config.dt_max) - math.log(self.config.dt_min))
|
||||
+ math.log(self.config.dt_min)
|
||||
)
|
||||
dt = torch.clamp(dt, min=self.config.dt_init_floor)
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
module.dt_bias.copy_(inv_dt)
|
||||
module.dt_bias._no_reinit = True
|
||||
self.dt_bias = nn.Parameter(inv_dt)
|
||||
assert self.config.A_init_range[0] > 0 and self.config.A_init_range[1] >= self.config.A_init_range[0]
|
||||
A = torch.empty(self.config.n_heads, dtype=torch.float32).uniform_(*self.config.A_init_range)
|
||||
self.A_log = torch.log(A).to(dtype=self.config.dtype)
|
||||
self.D = nn.Parameter(torch.ones(self.config.n_heads, device=self.config.device))
|
||||
|
||||
if isinstance(module, nn.Linear):
|
||||
if module.bias is not None:
|
||||
if not getattr(module.bias, "_no_reinit", False):
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
||||
self.norm = RMSNormGated(self.config.d_inner, eps=1e-5, norm_before_gate=False)
|
||||
|
||||
if self.config.rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["out_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(self.config.num_hidden_layers)
|
||||
self.out_proj = nn.Linear(self.config.d_inner, self.config.d_model, bias=self.config.bias)
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
|
||||
class Mamba2Output(ModelOutput):
|
||||
def forward(self, u, cache=None, seq_idx=None):
|
||||
"""
|
||||
Class for the MAMBA2 model outputs.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
cache_params (`Mamba2Cache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
u: (B, L, D)
|
||||
Returns: out : same shape as u
|
||||
"""
|
||||
|
||||
last_hidden_state: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[Mamba2Cache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
batch, length, _ = u.shape
|
||||
|
||||
return_cache = False
|
||||
if cache is not None and length > 1:
|
||||
cache = None
|
||||
return_cache = True
|
||||
|
||||
if cache is not None:
|
||||
out, cache = self.step(u, cache)
|
||||
return out, cache
|
||||
|
||||
zxbcdt = self.in_proj(u) # (B, L, d_in_proj)
|
||||
A = -torch.exp(self.A_log) # (nheads) or (d_inner, d_state)
|
||||
initial_states=repeat(self.init_states, "... -> b ...", b=batch) if self.config.learnable_init_states else None
|
||||
dt_limit_kwargs = {} if self.config.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.config.dt_limit)
|
||||
|
||||
z, xBC, dt = torch.split(
|
||||
zxbcdt,
|
||||
[self.config.d_inner, self.config.d_inner + 2 * self.config.n_groups * self.config.d_state, self.config.n_heads],
|
||||
dim=-1
|
||||
)
|
||||
dt = F.softplus(dt + self.dt_bias) # (B, L, nheads)
|
||||
|
||||
# 1D Convolution
|
||||
xBC = self.act(self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)) # (B, L, self.d_inner + 2 * n_groups * d_state)
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
|
||||
class Mamba2CausalLMOutput(ModelOutput):
|
||||
x, B, C = torch.split(xBC, [self.config.d_inner, self.config.n_groups * self.config.d_state, self.config.n_groups * self.config.d_state], dim=-1)
|
||||
y = mamba_chunk_scan_combined(
|
||||
rearrange(x, "b l (h p) -> b l h p", p=self.config.d_head),
|
||||
dt,
|
||||
A,
|
||||
rearrange(B, "b l (g n) -> b l g n", g=self.config.n_groups),
|
||||
rearrange(C, "b l (g n) -> b l g n", g=self.config.n_groups),
|
||||
chunk_size=self.config.chunk_size,
|
||||
D=self.D,
|
||||
z=None,
|
||||
seq_idx=seq_idx,
|
||||
initial_states=initial_states,
|
||||
**dt_limit_kwargs,
|
||||
)
|
||||
y = rearrange(y, "b l h p -> b l (h p)")
|
||||
|
||||
# Multiply "gate" branch and apply extra normalization layer
|
||||
y = self.norm(y, z)
|
||||
out = self.out_proj(y)
|
||||
return out, cache
|
||||
|
||||
def step(self, u, cache):
|
||||
"""
|
||||
Base class for causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
cache_params (`Mamba2Cache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
u: (B, 1, D)
|
||||
cache: (h_cache, conv_cache)
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[Mamba2Cache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
h_cache, conv_cache = cache
|
||||
|
||||
zxbcdt = self.in_proj(u.squeeze(1)) # (B, 2D)
|
||||
d_mlp = (zxbcdt.shape[-1] - 2 * self.config.d_inner - 2 * self.config.n_groups * self.config.d_state - self.config.n_heads) // 2
|
||||
z0, x0, z, xBC, dt = torch.split(zxbcdt, [d_mlp, d_mlp, self.config.d_inner, self.config.d_inner + 2 * self.config.n_groups * self.config.d_state, self.config.n_heads], dim=-1)
|
||||
|
||||
# conv step
|
||||
conv_cache.copy_(torch.roll(conv_cache, shifts=-1, dims=-1)) # update state (B, D, W)
|
||||
conv_cache[:, :, -1] = xBC
|
||||
xBC = torch.sum(conv_cache * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B, D)
|
||||
if self.conv1d.bias is not None:
|
||||
xBC = xBC + self.conv1d.bias
|
||||
xBC = self.act(xBC).to(dtype=x.dtype)
|
||||
|
||||
x, B, C = torch.split(xBC, [self.config.d_inner, self.config.n_groups * self.config.d_state, self.config.n_groups * self.config.d_state], dim=-1)
|
||||
A = -torch.exp(self.A_log.float()) # (n_heads)
|
||||
|
||||
|
||||
MAMBA2_START_DOCSTRING = r"""
|
||||
A = repeat(A, "h -> h p n", p=self.config.d_head, n=self.config.d_state).to(dtype=torch.float32)
|
||||
dt = repeat(dt, "b h -> b h p", p=self.config.d_head)
|
||||
dt_bias = repeat(self.dt_bias, "h -> h p", p=self.config.d_head)
|
||||
D = repeat(self.D, "h -> h p", p=self.config.d_head)
|
||||
B = rearrange(B, "b (g n) -> b g n", g=self.config.n_groups)
|
||||
C = rearrange(C, "b (g n) -> b g n", g=self.config.n_groups)
|
||||
x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.config.d_head)
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
y = selective_state_update(h_cache, x_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True)
|
||||
y = rearrange(y, "b h p -> b (h p)")
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
#if self.rmsnorm:
|
||||
y = self.norm(y, z)
|
||||
if d_mlp > 0:
|
||||
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
|
||||
out = self.out_proj(y)
|
||||
return out.unsqueeze(1), (h_cache, conv_cache)
|
||||
|
||||
Parameters:
|
||||
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
# taken straight from https://github.com/johnma2006/mamba-minimal/blob/master/model.py
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, d_model: int, eps: float = 1e-5, use_mup: bool = False):
|
||||
super().__init__()
|
||||
|
||||
MAMBA2_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
self.use_mup = use_mup
|
||||
self.eps = eps
|
||||
|
||||
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
|
||||
`input_ids`.
|
||||
# https://arxiv.org/abs/2404.05728, RMSNorm gains prevents muTransfer (section 4.2.3)
|
||||
if not use_mup:
|
||||
self.weight = nn.Parameter(torch.ones(d_model))
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
def forward(self, x):
|
||||
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
cache_params (`Mamba2Cache`, *optional*):
|
||||
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
||||
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
MAMBA2_START_DOCSTRING,
|
||||
)
|
||||
class Mamba2Model(Mamba2PreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
# Initialize weights and apply final processing
|
||||
self._register_load_state_dict_pre_hook(self.load_hook)
|
||||
self.post_init()
|
||||
|
||||
def load_hook(self, state_dict, prefix, *args):
|
||||
for k in state_dict:
|
||||
if "embedding." in k:
|
||||
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
||||
break
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.embeddings = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Mamba2Output,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[Tuple, Mamba2Output]:
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if self.gradient_checkpointing and self.training and use_cache:
|
||||
use_cache = False
|
||||
|
||||
if use_cache:
|
||||
if cache_params is None:
|
||||
cache_params = Mamba2Cache(
|
||||
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||||
)
|
||||
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
||||
elif cache_position is None:
|
||||
# cases when we do manual forward instead of using `model.generate` which will initiate
|
||||
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
||||
# hack to conjecture the current cache position
|
||||
raise ValueError(
|
||||
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
||||
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
||||
"be initialized for you automatically"
|
||||
)
|
||||
if not self.use_mup:
|
||||
return output * self.weight
|
||||
else:
|
||||
cache_params = None
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for mixer_block in self.layers:
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
||||
)
|
||||
else:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache_params=cache_params,
|
||||
cache_position=cache_position,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if use_cache:
|
||||
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||||
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
||||
|
||||
return Mamba2Output(
|
||||
last_hidden_state=hidden_states,
|
||||
cache_params=cache_params if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
|
||||
embeddings).
|
||||
""",
|
||||
MAMBA2_START_DOCSTRING,
|
||||
)
|
||||
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
|
||||
_tied_weights_keys = []
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = Mamba2Model(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.backbone.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
return self.backbone.set_input_embeddings(new_embeddings)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids,
|
||||
inputs_embeds=None,
|
||||
use_cache=None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
if inputs_embeds is not None:
|
||||
past_len = inputs_embeds.shape[1] + input_ids.shape[1]
|
||||
else:
|
||||
past_len = input_ids.shape[1]
|
||||
if use_cache:
|
||||
# `cache_position` should have been initialized in `generate`
|
||||
if cache_position is None:
|
||||
raise ValueError(
|
||||
"`cache_position` should not be None as it should have been initialized in "
|
||||
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
||||
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
||||
)
|
||||
# how do we detect that we are in decoding without cache?
|
||||
if cache_position[0] > 0:
|
||||
input_ids = input_ids[:, -1][..., None]
|
||||
attention_mask = attention_mask[:, -1][..., None]
|
||||
else:
|
||||
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
||||
# considering padding will be applied when input length is shorter, and truncation
|
||||
# will be applied when it is longer, so it will be equivalent to always have it match
|
||||
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
||||
cache_position = torch.arange(0, past_len, device=input_ids.device)
|
||||
# if the cache is not used, we also do have to extend the attention mask here
|
||||
# TODO there is likely a cleverer way to do this
|
||||
extended_mask = torch.ones(
|
||||
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||||
)
|
||||
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||||
cache_params = None
|
||||
|
||||
if attention_mask.shape[1] < past_len:
|
||||
# we have to update manually the attention mask if
|
||||
# we are in decoding without cache
|
||||
# and we don't have position_ids here
|
||||
# TODO but we should be able to use cache_position though at a later time
|
||||
extended_mask = torch.ones(
|
||||
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||||
)
|
||||
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||||
if inputs_embeds is not None and cache_params is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"attention_mask": attention_mask,
|
||||
"cache_params": cache_params,
|
||||
"use_cache": use_cache,
|
||||
"cache_position": cache_position,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Mamba2CausalLMOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
cache_position: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs, # for now we need this for generation
|
||||
) -> Union[Tuple, Mamba2CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
mamba2_outputs = self.backbone(
|
||||
input_ids,
|
||||
cache_params=cache_params,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
hidden_states = mamba2_outputs[0]
|
||||
|
||||
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + mamba2_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return Mamba2CausalLMOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
cache_params=mamba2_outputs.cache_params,
|
||||
hidden_states=mamba2_outputs.hidden_states,
|
||||
)
|
||||
return output
|
@ -106,6 +106,13 @@ class Mamba2Block(nn.Module):
|
||||
self.head_dim = args.hidden_size // args.num_heads
|
||||
self.n_groups = args.n_groups
|
||||
|
||||
projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
args.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
in_channels=self.conv_dim,
|
||||
@ -116,15 +123,6 @@ class Mamba2Block(nn.Module):
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
projection_size = args.intermediate_size + self.conv_dim + args.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
args.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.act = nn.SiLU()
|
||||
|
||||
self.A_log = mx.zeros(args.num_heads)
|
||||
self.D = mx.ones((args.num_heads,))
|
||||
self.dt_bias = mx.zeros(args.num_heads)
|
||||
@ -132,10 +130,10 @@ class Mamba2Block(nn.Module):
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def ssm_step(self, x, state, dt_proj):
|
||||
def ssm_step(self, x, state, dt):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
delta = nn.softplus(dt_proj + self.dt_bias)
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
|
||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
||||
|
||||
@ -143,13 +141,13 @@ class Mamba2Block(nn.Module):
|
||||
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
||||
C = C.reshape(batch_size, -1, self.state_size)
|
||||
|
||||
delta = delta.reshape(batch_size, self.num_heads, 1)
|
||||
dt = dt.reshape(batch_size, self.num_heads, 1)
|
||||
A = A.reshape(1, self.num_heads, 1)
|
||||
|
||||
if state is None:
|
||||
new_state = delta * B
|
||||
new_state = dt * B
|
||||
else:
|
||||
new_state = delta * (B + state * mx.exp(delta * A))
|
||||
new_state = dt * (B + state * mx.exp(dt * A))
|
||||
|
||||
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
||||
y = y + D * x[:, :self.num_heads]
|
||||
@ -163,27 +161,26 @@ class Mamba2Block(nn.Module):
|
||||
outputs = []
|
||||
for t in range(T):
|
||||
xt = x[:, t, :]
|
||||
xz = self.in_proj(xt)
|
||||
zxbcdt = self.in_proj(xt)
|
||||
|
||||
x_t, z_t, dt_proj = mx.split(
|
||||
xz,
|
||||
z, xBC, dt = mx.split(
|
||||
zxbcdt,
|
||||
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
# Use the new DepthWiseConv1d with caching
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
||||
x_t = conv_out.squeeze(1)
|
||||
x_t = nn.silu(x_t)
|
||||
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
|
||||
z_t = nn.silu(z_t)
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(z, 1), cache[0])
|
||||
z = conv_out.squeeze(1)
|
||||
z = nn.silu(z)
|
||||
y_t, cache[1] = self.ssm_step(z, cache[1], dt)
|
||||
xBC = nn.silu(xBC)
|
||||
|
||||
# Element-wise multiplication
|
||||
output_t = y_t[:, :, None] * z_t[:, None, :]
|
||||
output_t = y_t[:, :, None] * xBC[:, None, :]
|
||||
|
||||
# Sum across the second dimension to match the intermediate_size
|
||||
output_t = self.norm(output_t)
|
||||
output_t = output_t.sum(axis=1)
|
||||
|
||||
output_t = self.out_proj(output_t)
|
||||
outputs.append(output_t)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user