still generating gibberish

This commit is contained in:
Goekdeniz-Guelmez 2024-10-20 18:41:28 +02:00
parent ab4cf1d1cf
commit c1634ce81b
2 changed files with 225 additions and 791 deletions

File diff suppressed because it is too large Load Diff

View File

@ -106,6 +106,13 @@ class Mamba2Block(nn.Module):
self.head_dim = args.hidden_size // args.num_heads
self.n_groups = args.n_groups
projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
self.in_proj = nn.Linear(
args.hidden_size,
projection_size,
bias=args.use_bias
)
self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
self.conv1d = DepthWiseConv1d(
in_channels=self.conv_dim,
@ -116,15 +123,6 @@ class Mamba2Block(nn.Module):
padding=args.conv_kernel - 1
)
projection_size = args.intermediate_size + self.conv_dim + args.num_heads
self.in_proj = nn.Linear(
args.hidden_size,
projection_size,
bias=args.use_bias
)
self.act = nn.SiLU()
self.A_log = mx.zeros(args.num_heads)
self.D = mx.ones((args.num_heads,))
self.dt_bias = mx.zeros(args.num_heads)
@ -132,10 +130,10 @@ class Mamba2Block(nn.Module):
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
def ssm_step(self, x, state, dt_proj):
def ssm_step(self, x, state, dt):
A = -mx.exp(self.A_log)
D = self.D
delta = nn.softplus(dt_proj + self.dt_bias)
dt = nn.softplus(dt + self.dt_bias)
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
@ -143,13 +141,13 @@ class Mamba2Block(nn.Module):
B = B.reshape(batch_size, self.n_groups, self.state_size)
C = C.reshape(batch_size, -1, self.state_size)
delta = delta.reshape(batch_size, self.num_heads, 1)
dt = dt.reshape(batch_size, self.num_heads, 1)
A = A.reshape(1, self.num_heads, 1)
if state is None:
new_state = delta * B
new_state = dt * B
else:
new_state = delta * (B + state * mx.exp(delta * A))
new_state = dt * (B + state * mx.exp(dt * A))
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
y = y + D * x[:, :self.num_heads]
@ -163,27 +161,26 @@ class Mamba2Block(nn.Module):
outputs = []
for t in range(T):
xt = x[:, t, :]
xz = self.in_proj(xt)
zxbcdt = self.in_proj(xt)
x_t, z_t, dt_proj = mx.split(
xz,
z, xBC, dt = mx.split(
zxbcdt,
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
axis=-1
)
# Use the new DepthWiseConv1d with caching
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
x_t = conv_out.squeeze(1)
x_t = nn.silu(x_t)
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
z_t = nn.silu(z_t)
conv_out, cache[0] = self.conv1d(mx.expand_dims(z, 1), cache[0])
z = conv_out.squeeze(1)
z = nn.silu(z)
y_t, cache[1] = self.ssm_step(z, cache[1], dt)
xBC = nn.silu(xBC)
# Element-wise multiplication
output_t = y_t[:, :, None] * z_t[:, None, :]
output_t = y_t[:, :, None] * xBC[:, None, :]
# Sum across the second dimension to match the intermediate_size
output_t = self.norm(output_t)
output_t = output_t.sum(axis=1)
output_t = self.out_proj(output_t)
outputs.append(output_t)