mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
Mlx llm package (#301)
* fix converter * add recursive files * remove gitignore * remove gitignore * add packages properly * read me update * remove dup readme * relative * fix convert * fix community name * fix url * version
This commit is contained in:
parent
2b61d9deb6
commit
c6440416a2
2
llms/MANIFEST.in
Normal file
2
llms/MANIFEST.in
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
include mlx_lm/requirements.txt
|
||||||
|
recursive-include mlx_lm/ *.py
|
110
llms/README.md
Normal file
110
llms/README.md
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
## Generate Text with LLMs and MLX
|
||||||
|
|
||||||
|
The easiest way to get started is to install the `mlx-lm` package:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install mlx-lm
|
||||||
|
```
|
||||||
|
|
||||||
|
### Python API
|
||||||
|
|
||||||
|
You can use `mlx-lm` as a module:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from mlx_lm import load, generate
|
||||||
|
|
||||||
|
model, tokenizer = load("mistralai/Mistral-7B-v0.1")
|
||||||
|
|
||||||
|
response = generate(model, tokenizer, prompt="hello", verbose=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
To see a description of all the arguments you can do:
|
||||||
|
|
||||||
|
```
|
||||||
|
>>> help(generate)
|
||||||
|
```
|
||||||
|
|
||||||
|
The `mlx-lm` package also comes with functionality to quantize and optionally
|
||||||
|
upload models to the Hugging Face Hub.
|
||||||
|
|
||||||
|
You can convert models in the Python API with:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from mlx_lm import convert
|
||||||
|
|
||||||
|
upload_repo = "mlx-community/My-Mistral-7B-v0.1-4bit"
|
||||||
|
|
||||||
|
convert("mistralai/Mistral-7B-v0.1", quantize=True, upload_repo=upload_repo)
|
||||||
|
```
|
||||||
|
|
||||||
|
This will generate a 4-bit quantized Mistral-7B and upload it to the
|
||||||
|
repo `mlx-community/My-Mistral-7B-v0.1-4bit`. It will also save the
|
||||||
|
converted model in the path `mlx_model` by default.
|
||||||
|
|
||||||
|
To see a description of all the arguments you can do:
|
||||||
|
|
||||||
|
```
|
||||||
|
>>> help(convert)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Command Line
|
||||||
|
|
||||||
|
You can also use `mlx-lm` from the command line with:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m mlx_lm.generate --model mistralai/Mistral-7B-v0.1 --prompt "hello"
|
||||||
|
```
|
||||||
|
|
||||||
|
This will download a Mistral 7B model from the Hugging Face Hub and generate
|
||||||
|
text using the given prompt.
|
||||||
|
|
||||||
|
For a full list of options run:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m mlx_lm generate --help
|
||||||
|
```
|
||||||
|
|
||||||
|
To quantize a model from the command line run:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.1 -q
|
||||||
|
```
|
||||||
|
|
||||||
|
For more options run:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m mlx_lm.convert --help
|
||||||
|
```
|
||||||
|
|
||||||
|
You can upload new models to Hugging Face by specifying `--upload-repo` to
|
||||||
|
`convert`. For example, to upload a quantized Mistral-7B model to the
|
||||||
|
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m mlx_lm.convert \
|
||||||
|
--hf-path mistralai/Mistral-7B-v0.1 \
|
||||||
|
-q \
|
||||||
|
--upload-repo mlx-community/my-4bit-mistral \
|
||||||
|
```
|
||||||
|
|
||||||
|
### Supported Models
|
||||||
|
|
||||||
|
The example supports Hugging Face format Mistral, Llama, and Phi-2 style
|
||||||
|
models. If the model you want to run is not supported, file an
|
||||||
|
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
||||||
|
submit a pull request.
|
||||||
|
|
||||||
|
Here are a few examples of Hugging Face models that work with this example:
|
||||||
|
|
||||||
|
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||||
|
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||||||
|
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||||
|
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||||
|
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
||||||
|
|
||||||
|
Most
|
||||||
|
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
|
||||||
|
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
|
||||||
|
and
|
||||||
|
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
|
||||||
|
style models should work out of the box.
|
1
llms/hf_llm/.gitignore
vendored
1
llms/hf_llm/.gitignore
vendored
@ -1 +0,0 @@
|
|||||||
mlx_model
|
|
@ -1,86 +0,0 @@
|
|||||||
## Generate Text with MLX and :hugs: Hugging Face
|
|
||||||
|
|
||||||
This an example of large language model text generation that can pull models from
|
|
||||||
the Hugging Face Hub.
|
|
||||||
|
|
||||||
### Setup
|
|
||||||
|
|
||||||
Install the dependencies:
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
### Run
|
|
||||||
|
|
||||||
```
|
|
||||||
python generate.py --model <model_path> --prompt "hello"
|
|
||||||
```
|
|
||||||
|
|
||||||
For example:
|
|
||||||
|
|
||||||
```
|
|
||||||
python generate.py --model mistralai/Mistral-7B-v0.1 --prompt "hello"
|
|
||||||
```
|
|
||||||
|
|
||||||
will download the Mistral 7B model and generate text using the given prompt.
|
|
||||||
|
|
||||||
The `<model_path>` should be either a path to a local directory or a Hugging
|
|
||||||
Face repo with weights stored in `safetensors` format. If you use a repo from
|
|
||||||
the Hugging Face Hub, then the model will be downloaded and cached the first
|
|
||||||
time you run it. See the [Models](#models) section for a full list of supported models.
|
|
||||||
|
|
||||||
Run `python generate.py --help` to see all the options.
|
|
||||||
|
|
||||||
|
|
||||||
### Models
|
|
||||||
|
|
||||||
The example supports Hugging Face format Mistral, Llama, and Phi-2 style models. If the
|
|
||||||
model you want to run is not supported, file an
|
|
||||||
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
|
||||||
submit a pull request.
|
|
||||||
|
|
||||||
Here are a few examples of Hugging Face models that work with this example:
|
|
||||||
|
|
||||||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
|
||||||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
|
||||||
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
|
||||||
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
|
||||||
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
|
||||||
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
|
||||||
|
|
||||||
Most
|
|
||||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
|
|
||||||
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
|
|
||||||
and
|
|
||||||
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
|
|
||||||
style models should work out of the box.
|
|
||||||
|
|
||||||
### Convert new models
|
|
||||||
|
|
||||||
You can convert (change the data type or quantize) models using the
|
|
||||||
`convert.py` script. This script takes a Hugging Face repo as input and outputs
|
|
||||||
a model directory (which you can optionally also upload to Hugging Face).
|
|
||||||
|
|
||||||
For example, to make a 4-bit quantized model, run:
|
|
||||||
|
|
||||||
```
|
|
||||||
python convert.py --hf-path <hf_repo> -q
|
|
||||||
```
|
|
||||||
|
|
||||||
For more options run:
|
|
||||||
|
|
||||||
```
|
|
||||||
python convert.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
You can upload new models to Hugging Face by specifying `--upload-repo` to
|
|
||||||
`convert.py`. For example, to upload a quantized Mistral-7B model to the
|
|
||||||
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
|
|
||||||
|
|
||||||
```
|
|
||||||
python convert.py \
|
|
||||||
--hf-path mistralai/Mistral-7B-v0.1 \
|
|
||||||
-q \
|
|
||||||
--upload mlx-community/my-4bit-mistral \
|
|
||||||
```
|
|
@ -1,269 +0,0 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
|
||||||
|
|
||||||
import glob
|
|
||||||
import inspect
|
|
||||||
import json
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ModelArgs:
|
|
||||||
hidden_size: int
|
|
||||||
num_hidden_layers: int
|
|
||||||
intermediate_size: int
|
|
||||||
num_attention_heads: int
|
|
||||||
rms_norm_eps: float
|
|
||||||
vocab_size: int
|
|
||||||
num_key_value_heads: int = None
|
|
||||||
rope_theta: float = 10000
|
|
||||||
rope_traditional: bool = False
|
|
||||||
model_type: str = None
|
|
||||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
||||||
|
|
||||||
def __post_init__(self):
|
|
||||||
if self.num_key_value_heads is None:
|
|
||||||
self.num_key_value_heads = self.num_attention_heads
|
|
||||||
|
|
||||||
if self.rope_scaling:
|
|
||||||
required_keys = {"factor", "type"}
|
|
||||||
if not all(key in self.rope_scaling for key in required_keys):
|
|
||||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
||||||
|
|
||||||
if self.rope_scaling["type"] != "linear":
|
|
||||||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_dict(cls, params):
|
|
||||||
return cls(
|
|
||||||
**{
|
|
||||||
k: v
|
|
||||||
for k, v in params.items()
|
|
||||||
if k in inspect.signature(cls).parameters
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class RMSNorm(nn.Module):
|
|
||||||
def __init__(self, dims: int, eps: float = 1e-5):
|
|
||||||
super().__init__()
|
|
||||||
self.weight = mx.ones((dims,))
|
|
||||||
self.eps = eps
|
|
||||||
|
|
||||||
def _norm(self, x):
|
|
||||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
|
||||||
|
|
||||||
def __call__(self, x):
|
|
||||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
|
||||||
return self.weight * output
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
dim = args.hidden_size
|
|
||||||
self.n_heads = n_heads = args.num_attention_heads
|
|
||||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
||||||
|
|
||||||
self.repeats = n_heads // n_kv_heads
|
|
||||||
|
|
||||||
head_dim = args.hidden_size // n_heads
|
|
||||||
self.scale = head_dim**-0.5
|
|
||||||
|
|
||||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
||||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
||||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
||||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
||||||
rope_scale = (
|
|
||||||
1 / args.rope_scaling["factor"]
|
|
||||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
|
||||||
else 1
|
|
||||||
)
|
|
||||||
self.rope = nn.RoPE(
|
|
||||||
head_dim,
|
|
||||||
traditional=args.rope_traditional,
|
|
||||||
base=args.rope_theta,
|
|
||||||
scale=rope_scale,
|
|
||||||
)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
x: mx.array,
|
|
||||||
mask: Optional[mx.array] = None,
|
|
||||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
||||||
) -> mx.array:
|
|
||||||
B, L, D = x.shape
|
|
||||||
|
|
||||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
||||||
|
|
||||||
# Prepare the queries, keys and values for the attention computation
|
|
||||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
|
|
||||||
def repeat(a):
|
|
||||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
|
||||||
return a.reshape([B, self.n_heads, L, -1])
|
|
||||||
|
|
||||||
if self.repeats > 1:
|
|
||||||
keys, values = map(repeat, (keys, values))
|
|
||||||
|
|
||||||
if cache is not None:
|
|
||||||
key_cache, value_cache = cache
|
|
||||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
||||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
||||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
||||||
values = mx.concatenate([value_cache, values], axis=2)
|
|
||||||
else:
|
|
||||||
queries = self.rope(queries)
|
|
||||||
keys = self.rope(keys)
|
|
||||||
|
|
||||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
|
||||||
if mask is not None:
|
|
||||||
scores += mask
|
|
||||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
||||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
||||||
return self.o_proj(output), (keys, values)
|
|
||||||
|
|
||||||
|
|
||||||
class MLP(nn.Module):
|
|
||||||
def __init__(self, dim, hidden_dim):
|
|
||||||
super().__init__()
|
|
||||||
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
||||||
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
||||||
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, x) -> mx.array:
|
|
||||||
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerBlock(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.num_attention_heads = args.num_attention_heads
|
|
||||||
self.hidden_size = args.hidden_size
|
|
||||||
self.self_attn = Attention(args)
|
|
||||||
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
|
||||||
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
||||||
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
||||||
self.args = args
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
x: mx.array,
|
|
||||||
mask: Optional[mx.array] = None,
|
|
||||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
||||||
) -> mx.array:
|
|
||||||
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
||||||
h = x + r
|
|
||||||
r = self.mlp(self.post_attention_layernorm(h))
|
|
||||||
out = h + r
|
|
||||||
return out, cache
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaModel(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.vocab_size = args.vocab_size
|
|
||||||
self.num_hidden_layers = args.num_hidden_layers
|
|
||||||
assert self.vocab_size > 0
|
|
||||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
||||||
self.layers = [
|
|
||||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
||||||
]
|
|
||||||
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
inputs: mx.array,
|
|
||||||
cache=None,
|
|
||||||
):
|
|
||||||
h = self.embed_tokens(inputs)
|
|
||||||
|
|
||||||
mask = None
|
|
||||||
if h.shape[1] > 1:
|
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
|
||||||
mask = mask.astype(h.dtype)
|
|
||||||
|
|
||||||
if cache is None:
|
|
||||||
cache = [None] * len(self.layers)
|
|
||||||
|
|
||||||
for e, layer in enumerate(self.layers):
|
|
||||||
h, cache[e] = layer(h, mask, cache[e])
|
|
||||||
|
|
||||||
return self.norm(h), cache
|
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.model = LlamaModel(args)
|
|
||||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
inputs: mx.array,
|
|
||||||
cache=None,
|
|
||||||
):
|
|
||||||
out, cache = self.model(inputs, cache)
|
|
||||||
return self.lm_head(out), cache
|
|
||||||
|
|
||||||
|
|
||||||
def load(path_or_hf_repo: str):
|
|
||||||
# If the path exists, it will try to load model form it
|
|
||||||
# otherwise download and cache from the hf_repo and cache
|
|
||||||
model_path = Path(path_or_hf_repo)
|
|
||||||
if not model_path.exists():
|
|
||||||
model_path = Path(
|
|
||||||
snapshot_download(
|
|
||||||
repo_id=path_or_hf_repo,
|
|
||||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
with open(model_path / "config.json", "r") as f:
|
|
||||||
config = json.loads(f.read())
|
|
||||||
quantization = config.get("quantization", None)
|
|
||||||
model_args = ModelArgs.from_dict(config)
|
|
||||||
|
|
||||||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
|
||||||
if len(weight_files) == 0:
|
|
||||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
|
||||||
|
|
||||||
weights = {}
|
|
||||||
for wf in weight_files:
|
|
||||||
weights.update(mx.load(wf).items())
|
|
||||||
|
|
||||||
model = Model(model_args)
|
|
||||||
if quantization is not None:
|
|
||||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
|
||||||
|
|
||||||
model.load_weights(list(weights.items()))
|
|
||||||
|
|
||||||
mx.eval(model.parameters())
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
||||||
return model, tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
|
||||||
def sample(logits):
|
|
||||||
if temp == 0:
|
|
||||||
return mx.argmax(logits, axis=-1)
|
|
||||||
else:
|
|
||||||
return mx.random.categorical(logits * (1 / temp))
|
|
||||||
|
|
||||||
y = prompt
|
|
||||||
cache = None
|
|
||||||
while True:
|
|
||||||
logits, cache = model(y[None], cache=cache)
|
|
||||||
logits = logits[:, -1, :]
|
|
||||||
y = sample(logits)
|
|
||||||
yield y
|
|
7
llms/mlx_lm/README.md
Normal file
7
llms/mlx_lm/README.md
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
## Generate Text with MLX and :hugs: Hugging Face
|
||||||
|
|
||||||
|
This an example of large language model text generation that can pull models from
|
||||||
|
the Hugging Face Hub.
|
||||||
|
|
||||||
|
For more information on this example, see the
|
||||||
|
[README](../README.md) in the parent directory.
|
37
llms/mlx_lm/UPLOAD.md
Normal file
37
llms/mlx_lm/UPLOAD.md
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
### Packaging for PyPI
|
||||||
|
|
||||||
|
Install `build` and `twine`:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install --user --upgrade build
|
||||||
|
pip install --user --upgrade twine
|
||||||
|
```
|
||||||
|
|
||||||
|
Generate the source distribution and wheel:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m build
|
||||||
|
```
|
||||||
|
|
||||||
|
> [!warning]
|
||||||
|
> Use a test server first
|
||||||
|
|
||||||
|
#### Test Upload
|
||||||
|
|
||||||
|
Upload to test server:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m twine upload --repository testpypi dist/*
|
||||||
|
```
|
||||||
|
|
||||||
|
Install from test server and check that it works:
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m pip install --index-url https://test.pypi.org/simple/ --no-deps mlx-lm
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Upload
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m twine upload dist/*
|
||||||
|
```
|
2
llms/mlx_lm/__init__.py
Normal file
2
llms/mlx_lm/__init__.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
from .convert import convert
|
||||||
|
from .utils import generate, load
|
@ -9,7 +9,8 @@ import mlx.core as mx
|
|||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
import transformers
|
import transformers
|
||||||
from mlx.utils import tree_flatten
|
from mlx.utils import tree_flatten
|
||||||
from utils import get_model_path, load
|
|
||||||
|
from .utils import get_model_path, load
|
||||||
|
|
||||||
MAX_FILE_SIZE_GB = 15
|
MAX_FILE_SIZE_GB = 15
|
||||||
|
|
||||||
@ -73,26 +74,30 @@ def fetch_from_hub(
|
|||||||
return weights, config.to_dict(), tokenizer
|
return weights, config.to_dict(), tokenizer
|
||||||
|
|
||||||
|
|
||||||
def quantize(weights: dict, config: dict, args: argparse.Namespace) -> tuple:
|
def quantize_model(
|
||||||
|
weights: dict, config: dict, hf_path: str, q_group_size: int, q_bits: int
|
||||||
|
) -> tuple:
|
||||||
"""
|
"""
|
||||||
Applies quantization to the model weights.
|
Applies quantization to the model weights.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
weights (dict): Model weights.
|
weights (dict): Model weights.
|
||||||
config (dict): Model configuration.
|
config (dict): Model configuration.
|
||||||
args (argparse.Namespace): Command-line arguments.
|
hf_path (str): HF model path..
|
||||||
|
q_group_size (int): Group size for quantization.
|
||||||
|
q_bits (int): Bits per weight for quantization.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple: Tuple containing quantized weights and config.
|
tuple: Tuple containing quantized weights and config.
|
||||||
"""
|
"""
|
||||||
quantized_config = copy.deepcopy(config)
|
quantized_config = copy.deepcopy(config)
|
||||||
model, _ = load(args.hf_path)
|
model, _ = load(hf_path)
|
||||||
model.load_weights(list(weights.items()))
|
model.load_weights(list(weights.items()))
|
||||||
|
|
||||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
nn.QuantizedLinear.quantize_module(model, q_group_size, q_bits)
|
||||||
quantized_config["quantization"] = {
|
quantized_config["quantization"] = {
|
||||||
"group_size": args.q_group_size,
|
"group_size": q_group_size,
|
||||||
"bits": args.q_bits,
|
"bits": q_bits,
|
||||||
}
|
}
|
||||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||||
|
|
||||||
@ -148,7 +153,7 @@ Refer to the [original model card](https://huggingface.co/{hf_path}) for more de
|
|||||||
pip install mlx
|
pip install mlx
|
||||||
git clone https://github.com/ml-explore/mlx-examples.git
|
git clone https://github.com/ml-explore/mlx-examples.git
|
||||||
cd mlx-examples/llms/hf_llm
|
cd mlx-examples/llms/hf_llm
|
||||||
python generate.py --model {repo_id} --prompt "My name is"
|
python generate.py --model {upload_repo} --prompt "My name is"
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
card.save(os.path.join(path, "README.md"))
|
card.save(os.path.join(path, "README.md"))
|
||||||
@ -164,20 +169,24 @@ python generate.py --model {repo_id} --prompt "My name is"
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def convert(
|
||||||
parser = configure_parser()
|
hf_path: str,
|
||||||
args = parser.parse_args()
|
mlx_path: str = "mlx_model",
|
||||||
|
quantize: bool = False,
|
||||||
|
q_group_size: int = 64,
|
||||||
|
q_bits: int = 4,
|
||||||
|
dtype: str = "float16",
|
||||||
|
upload_repo: str = None,
|
||||||
|
):
|
||||||
print("[INFO] Loading")
|
print("[INFO] Loading")
|
||||||
weights, config, tokenizer = fetch_from_hub(args.hf_path)
|
weights, config, tokenizer = fetch_from_hub(hf_path)
|
||||||
|
dtype = mx.float16 if quantize else getattr(mx, dtype)
|
||||||
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
|
||||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||||
if args.quantize:
|
if quantize:
|
||||||
print("[INFO] Quantizing")
|
print("[INFO] Quantizing")
|
||||||
weights, config = quantize(weights, config, args)
|
weights, config = quantize_model(weights, config, hf_path, q_group_size, q_bits)
|
||||||
|
|
||||||
mlx_path = Path(args.mlx_path)
|
mlx_path = Path(mlx_path)
|
||||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||||
shards = make_shards(weights)
|
shards = make_shards(weights)
|
||||||
for i, shard in enumerate(shards):
|
for i, shard in enumerate(shards):
|
||||||
@ -186,5 +195,11 @@ if __name__ == "__main__":
|
|||||||
with open(mlx_path / "config.json", "w") as fid:
|
with open(mlx_path / "config.json", "w") as fid:
|
||||||
json.dump(config, fid, indent=4)
|
json.dump(config, fid, indent=4)
|
||||||
|
|
||||||
if args.upload_repo is not None:
|
if upload_repo is not None:
|
||||||
upload_to_hub(mlx_path, args.upload_repo, args.hf_path)
|
upload_to_hub(mlx_path, upload_repo, hf_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = configure_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
convert(**vars(args))
|
@ -2,7 +2,8 @@ import argparse
|
|||||||
import time
|
import time
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
from utils import generate, load
|
|
||||||
|
from .utils import generate_step, load
|
||||||
|
|
||||||
DEFAULT_MODEL_PATH = "mlx_model"
|
DEFAULT_MODEL_PATH = "mlx_model"
|
||||||
DEFAULT_PROMPT = "hello"
|
DEFAULT_PROMPT = "hello"
|
||||||
@ -47,7 +48,9 @@ def main(args):
|
|||||||
tic = time.time()
|
tic = time.time()
|
||||||
tokens = []
|
tokens = []
|
||||||
skip = 0
|
skip = 0
|
||||||
for token, n in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
for token, n in zip(
|
||||||
|
generate_step(prompt, model, args.temp), range(args.max_tokens)
|
||||||
|
):
|
||||||
if token == tokenizer.eos_token_id:
|
if token == tokenizer.eos_token_id:
|
||||||
break
|
break
|
||||||
if n == 0:
|
if n == 0:
|
@ -1,4 +1,4 @@
|
|||||||
mlx>=0.0.7
|
mlx
|
||||||
numpy
|
numpy
|
||||||
transformers
|
transformers
|
||||||
protobuf
|
protobuf
|
@ -6,13 +6,12 @@ from typing import Generator, Tuple
|
|||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||||
|
|
||||||
# Local imports
|
# Local imports
|
||||||
import models.llama as llama
|
from .models import llama, phi2
|
||||||
import models.phi2 as phi2
|
from .models.base import BaseModelArgs
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from models.base import BaseModelArgs
|
|
||||||
from transformers import AutoTokenizer, PreTrainedTokenizer
|
|
||||||
|
|
||||||
# Constants
|
# Constants
|
||||||
MODEL_MAPPING = {
|
MODEL_MAPPING = {
|
||||||
@ -64,11 +63,11 @@ def get_model_path(path_or_hf_repo: str) -> Path:
|
|||||||
return model_path
|
return model_path
|
||||||
|
|
||||||
|
|
||||||
def generate(
|
def generate_step(
|
||||||
prompt: mx.array, model: nn.Module, temp: float = 0.0
|
prompt: mx.array, model: nn.Module, temp: float = 0.0
|
||||||
) -> Generator[mx.array, None, None]:
|
) -> Generator[mx.array, None, None]:
|
||||||
"""
|
"""
|
||||||
Generate text based on the given prompt and model.
|
A generator producing text based on the given prompt from the model.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
prompt (mx.array): The input prompt.
|
prompt (mx.array): The input prompt.
|
||||||
@ -76,7 +75,7 @@ def generate(
|
|||||||
temp (float): The temperature for sampling. If temp is 0, use max sampling.
|
temp (float): The temperature for sampling. If temp is 0, use max sampling.
|
||||||
|
|
||||||
Yields:
|
Yields:
|
||||||
mx.array: The generated text.
|
Generator[mx.array]: A generator producing one token per call.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def sample(logits: mx.array) -> mx.array:
|
def sample(logits: mx.array) -> mx.array:
|
||||||
@ -95,6 +94,46 @@ def generate(
|
|||||||
yield y
|
yield y
|
||||||
|
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: PreTrainedTokenizer,
|
||||||
|
prompt: str,
|
||||||
|
temp: float = 0.0,
|
||||||
|
max_tokens: int = 100,
|
||||||
|
verbose: bool = False,
|
||||||
|
) -> str:
|
||||||
|
"""
|
||||||
|
Generate text from the model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (nn.Module): The language model.
|
||||||
|
tokenizer (PreTrainedTokenizer): The tokenizer.
|
||||||
|
prompt (str): The string prompt.
|
||||||
|
temp (float): The temperature for sampling (default 0).
|
||||||
|
max_tokens (int): The maximum number of tokens (default 100).
|
||||||
|
"""
|
||||||
|
|
||||||
|
prompt = mx.array(tokenizer.encode(prompt))
|
||||||
|
|
||||||
|
tokens = []
|
||||||
|
skip = 0
|
||||||
|
for token, _ in zip(generate_step(prompt, model, temp), range(max_tokens)):
|
||||||
|
if token == tokenizer.eos_token_id:
|
||||||
|
break
|
||||||
|
|
||||||
|
tokens.append(token.item())
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
s = tokenizer.decode(tokens)
|
||||||
|
print(s[skip:], end="", flush=True)
|
||||||
|
skip = len(s)
|
||||||
|
|
||||||
|
tokens = tokenizer.decode(tokens)[skip:]
|
||||||
|
if verbose:
|
||||||
|
print(tokens, flush=True)
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
|
||||||
def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
|
def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
|
||||||
"""
|
"""
|
||||||
Load the model from a given path or a huggingface repository.
|
Load the model from a given path or a huggingface repository.
|
23
llms/setup.py
Normal file
23
llms/setup.py
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pkg_resources
|
||||||
|
from setuptools import setup
|
||||||
|
|
||||||
|
with open(Path(__file__).parent / "mlx_lm/requirements.txt") as fid:
|
||||||
|
requirements = [str(r) for r in pkg_resources.parse_requirements(fid)]
|
||||||
|
setup(
|
||||||
|
name="mlx-lm",
|
||||||
|
version="0.0.1",
|
||||||
|
description="LLMs on Apple silicon with MLX and the Hugging Face Hub",
|
||||||
|
long_description=open("README.md", encoding="utf-8").read(),
|
||||||
|
long_description_content_type="text/markdown",
|
||||||
|
readme="README.md",
|
||||||
|
author_email="mlx@group.apple.com",
|
||||||
|
author="MLX Contributors",
|
||||||
|
url="https://github.com/ml-explore/mlx-examples",
|
||||||
|
license="MIT",
|
||||||
|
install_requires=requirements,
|
||||||
|
packages=["mlx_lm", "mlx_lm.models"],
|
||||||
|
python_requires=">=3.8",
|
||||||
|
)
|
Loading…
Reference in New Issue
Block a user