mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
Mlx llm package (#301)
* fix converter * add recursive files * remove gitignore * remove gitignore * add packages properly * read me update * remove dup readme * relative * fix convert * fix community name * fix url * version
This commit is contained in:
parent
2b61d9deb6
commit
c6440416a2
2
llms/MANIFEST.in
Normal file
2
llms/MANIFEST.in
Normal file
@ -0,0 +1,2 @@
|
||||
include mlx_lm/requirements.txt
|
||||
recursive-include mlx_lm/ *.py
|
110
llms/README.md
Normal file
110
llms/README.md
Normal file
@ -0,0 +1,110 @@
|
||||
## Generate Text with LLMs and MLX
|
||||
|
||||
The easiest way to get started is to install the `mlx-lm` package:
|
||||
|
||||
```shell
|
||||
pip install mlx-lm
|
||||
```
|
||||
|
||||
### Python API
|
||||
|
||||
You can use `mlx-lm` as a module:
|
||||
|
||||
```python
|
||||
from mlx_lm import load, generate
|
||||
|
||||
model, tokenizer = load("mistralai/Mistral-7B-v0.1")
|
||||
|
||||
response = generate(model, tokenizer, prompt="hello", verbose=True)
|
||||
```
|
||||
|
||||
To see a description of all the arguments you can do:
|
||||
|
||||
```
|
||||
>>> help(generate)
|
||||
```
|
||||
|
||||
The `mlx-lm` package also comes with functionality to quantize and optionally
|
||||
upload models to the Hugging Face Hub.
|
||||
|
||||
You can convert models in the Python API with:
|
||||
|
||||
```python
|
||||
from mlx_lm import convert
|
||||
|
||||
upload_repo = "mlx-community/My-Mistral-7B-v0.1-4bit"
|
||||
|
||||
convert("mistralai/Mistral-7B-v0.1", quantize=True, upload_repo=upload_repo)
|
||||
```
|
||||
|
||||
This will generate a 4-bit quantized Mistral-7B and upload it to the
|
||||
repo `mlx-community/My-Mistral-7B-v0.1-4bit`. It will also save the
|
||||
converted model in the path `mlx_model` by default.
|
||||
|
||||
To see a description of all the arguments you can do:
|
||||
|
||||
```
|
||||
>>> help(convert)
|
||||
```
|
||||
|
||||
### Command Line
|
||||
|
||||
You can also use `mlx-lm` from the command line with:
|
||||
|
||||
```
|
||||
python -m mlx_lm.generate --model mistralai/Mistral-7B-v0.1 --prompt "hello"
|
||||
```
|
||||
|
||||
This will download a Mistral 7B model from the Hugging Face Hub and generate
|
||||
text using the given prompt.
|
||||
|
||||
For a full list of options run:
|
||||
|
||||
```
|
||||
python -m mlx_lm generate --help
|
||||
```
|
||||
|
||||
To quantize a model from the command line run:
|
||||
|
||||
```
|
||||
python -m mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.1 -q
|
||||
```
|
||||
|
||||
For more options run:
|
||||
|
||||
```
|
||||
python -m mlx_lm.convert --help
|
||||
```
|
||||
|
||||
You can upload new models to Hugging Face by specifying `--upload-repo` to
|
||||
`convert`. For example, to upload a quantized Mistral-7B model to the
|
||||
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
|
||||
|
||||
```
|
||||
python -m mlx_lm.convert \
|
||||
--hf-path mistralai/Mistral-7B-v0.1 \
|
||||
-q \
|
||||
--upload-repo mlx-community/my-4bit-mistral \
|
||||
```
|
||||
|
||||
### Supported Models
|
||||
|
||||
The example supports Hugging Face format Mistral, Llama, and Phi-2 style
|
||||
models. If the model you want to run is not supported, file an
|
||||
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
||||
submit a pull request.
|
||||
|
||||
Here are a few examples of Hugging Face models that work with this example:
|
||||
|
||||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||||
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
||||
|
||||
Most
|
||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
|
||||
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
|
||||
and
|
||||
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
|
||||
style models should work out of the box.
|
1
llms/hf_llm/.gitignore
vendored
1
llms/hf_llm/.gitignore
vendored
@ -1 +0,0 @@
|
||||
mlx_model
|
@ -1,86 +0,0 @@
|
||||
## Generate Text with MLX and :hugs: Hugging Face
|
||||
|
||||
This an example of large language model text generation that can pull models from
|
||||
the Hugging Face Hub.
|
||||
|
||||
### Setup
|
||||
|
||||
Install the dependencies:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
```
|
||||
python generate.py --model <model_path> --prompt "hello"
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
python generate.py --model mistralai/Mistral-7B-v0.1 --prompt "hello"
|
||||
```
|
||||
|
||||
will download the Mistral 7B model and generate text using the given prompt.
|
||||
|
||||
The `<model_path>` should be either a path to a local directory or a Hugging
|
||||
Face repo with weights stored in `safetensors` format. If you use a repo from
|
||||
the Hugging Face Hub, then the model will be downloaded and cached the first
|
||||
time you run it. See the [Models](#models) section for a full list of supported models.
|
||||
|
||||
Run `python generate.py --help` to see all the options.
|
||||
|
||||
|
||||
### Models
|
||||
|
||||
The example supports Hugging Face format Mistral, Llama, and Phi-2 style models. If the
|
||||
model you want to run is not supported, file an
|
||||
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
||||
submit a pull request.
|
||||
|
||||
Here are a few examples of Hugging Face models that work with this example:
|
||||
|
||||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||||
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
||||
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
||||
|
||||
Most
|
||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
|
||||
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
|
||||
and
|
||||
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
|
||||
style models should work out of the box.
|
||||
|
||||
### Convert new models
|
||||
|
||||
You can convert (change the data type or quantize) models using the
|
||||
`convert.py` script. This script takes a Hugging Face repo as input and outputs
|
||||
a model directory (which you can optionally also upload to Hugging Face).
|
||||
|
||||
For example, to make a 4-bit quantized model, run:
|
||||
|
||||
```
|
||||
python convert.py --hf-path <hf_repo> -q
|
||||
```
|
||||
|
||||
For more options run:
|
||||
|
||||
```
|
||||
python convert.py --help
|
||||
```
|
||||
|
||||
You can upload new models to Hugging Face by specifying `--upload-repo` to
|
||||
`convert.py`. For example, to upload a quantized Mistral-7B model to the
|
||||
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
|
||||
|
||||
```
|
||||
python convert.py \
|
||||
--hf-path mistralai/Mistral-7B-v0.1 \
|
||||
-q \
|
||||
--upload mlx-community/my-4bit-mistral \
|
||||
```
|
@ -1,269 +0,0 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import glob
|
||||
import inspect
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
hidden_size: int
|
||||
num_hidden_layers: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
model_type: str = None
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
self.num_key_value_heads = self.num_attention_heads
|
||||
|
||||
if self.rope_scaling:
|
||||
required_keys = {"factor", "type"}
|
||||
if not all(key in self.rope_scaling for key in required_keys):
|
||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||
|
||||
if self.rope_scaling["type"] != "linear":
|
||||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, params):
|
||||
return cls(
|
||||
**{
|
||||
k: v
|
||||
for k, v in params.items()
|
||||
if k in inspect.signature(cls).parameters
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
def _norm(self, x):
|
||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||
|
||||
def __call__(self, x):
|
||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||
return self.weight * output
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
self.repeats = n_heads // n_kv_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||
rope_scale = (
|
||||
1 / args.rope_scaling["factor"]
|
||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||
else 1
|
||||
)
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
def repeat(a):
|
||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||
return a.reshape([B, self.n_heads, L, -1])
|
||||
|
||||
if self.repeats > 1:
|
||||
keys, values = map(repeat, (keys, values))
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output), (keys, values)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
||||
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.num_attention_heads = args.num_attention_heads
|
||||
self.hidden_size = args.hidden_size
|
||||
self.self_attn = Attention(args)
|
||||
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
||||
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.args = args
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r
|
||||
return out, cache
|
||||
|
||||
|
||||
class LlamaModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
assert self.vocab_size > 0
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [
|
||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||
]
|
||||
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for e, layer in enumerate(self.layers):
|
||||
h, cache[e] = layer(h, mask, cache[e])
|
||||
|
||||
return self.norm(h), cache
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.model = LlamaModel(args)
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out, cache = self.model(inputs, cache)
|
||||
return self.lm_head(out), cache
|
||||
|
||||
|
||||
def load(path_or_hf_repo: str):
|
||||
# If the path exists, it will try to load model form it
|
||||
# otherwise download and cache from the hf_repo and cache
|
||||
model_path = Path(path_or_hf_repo)
|
||||
if not model_path.exists():
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_hf_repo,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
)
|
||||
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
quantization = config.get("quantization", None)
|
||||
model_args = ModelArgs.from_dict(config)
|
||||
|
||||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
model = Model(model_args)
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
mx.eval(model.parameters())
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
y = prompt
|
||||
cache = None
|
||||
while True:
|
||||
logits, cache = model(y[None], cache=cache)
|
||||
logits = logits[:, -1, :]
|
||||
y = sample(logits)
|
||||
yield y
|
7
llms/mlx_lm/README.md
Normal file
7
llms/mlx_lm/README.md
Normal file
@ -0,0 +1,7 @@
|
||||
## Generate Text with MLX and :hugs: Hugging Face
|
||||
|
||||
This an example of large language model text generation that can pull models from
|
||||
the Hugging Face Hub.
|
||||
|
||||
For more information on this example, see the
|
||||
[README](../README.md) in the parent directory.
|
37
llms/mlx_lm/UPLOAD.md
Normal file
37
llms/mlx_lm/UPLOAD.md
Normal file
@ -0,0 +1,37 @@
|
||||
### Packaging for PyPI
|
||||
|
||||
Install `build` and `twine`:
|
||||
|
||||
```
|
||||
pip install --user --upgrade build
|
||||
pip install --user --upgrade twine
|
||||
```
|
||||
|
||||
Generate the source distribution and wheel:
|
||||
|
||||
```
|
||||
python -m build
|
||||
```
|
||||
|
||||
> [!warning]
|
||||
> Use a test server first
|
||||
|
||||
#### Test Upload
|
||||
|
||||
Upload to test server:
|
||||
|
||||
```
|
||||
python -m twine upload --repository testpypi dist/*
|
||||
```
|
||||
|
||||
Install from test server and check that it works:
|
||||
|
||||
```
|
||||
python -m pip install --index-url https://test.pypi.org/simple/ --no-deps mlx-lm
|
||||
```
|
||||
|
||||
#### Upload
|
||||
|
||||
```
|
||||
python -m twine upload dist/*
|
||||
```
|
2
llms/mlx_lm/__init__.py
Normal file
2
llms/mlx_lm/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .convert import convert
|
||||
from .utils import generate, load
|
@ -9,7 +9,8 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import transformers
|
||||
from mlx.utils import tree_flatten
|
||||
from utils import get_model_path, load
|
||||
|
||||
from .utils import get_model_path, load
|
||||
|
||||
MAX_FILE_SIZE_GB = 15
|
||||
|
||||
@ -73,26 +74,30 @@ def fetch_from_hub(
|
||||
return weights, config.to_dict(), tokenizer
|
||||
|
||||
|
||||
def quantize(weights: dict, config: dict, args: argparse.Namespace) -> tuple:
|
||||
def quantize_model(
|
||||
weights: dict, config: dict, hf_path: str, q_group_size: int, q_bits: int
|
||||
) -> tuple:
|
||||
"""
|
||||
Applies quantization to the model weights.
|
||||
|
||||
Args:
|
||||
weights (dict): Model weights.
|
||||
config (dict): Model configuration.
|
||||
args (argparse.Namespace): Command-line arguments.
|
||||
hf_path (str): HF model path..
|
||||
q_group_size (int): Group size for quantization.
|
||||
q_bits (int): Bits per weight for quantization.
|
||||
|
||||
Returns:
|
||||
tuple: Tuple containing quantized weights and config.
|
||||
"""
|
||||
quantized_config = copy.deepcopy(config)
|
||||
model, _ = load(args.hf_path)
|
||||
model, _ = load(hf_path)
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
nn.QuantizedLinear.quantize_module(model, q_group_size, q_bits)
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
"group_size": q_group_size,
|
||||
"bits": q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
@ -148,7 +153,7 @@ Refer to the [original model card](https://huggingface.co/{hf_path}) for more de
|
||||
pip install mlx
|
||||
git clone https://github.com/ml-explore/mlx-examples.git
|
||||
cd mlx-examples/llms/hf_llm
|
||||
python generate.py --model {repo_id} --prompt "My name is"
|
||||
python generate.py --model {upload_repo} --prompt "My name is"
|
||||
```
|
||||
"""
|
||||
card.save(os.path.join(path, "README.md"))
|
||||
@ -164,20 +169,24 @@ python generate.py --model {repo_id} --prompt "My name is"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = configure_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
def convert(
|
||||
hf_path: str,
|
||||
mlx_path: str = "mlx_model",
|
||||
quantize: bool = False,
|
||||
q_group_size: int = 64,
|
||||
q_bits: int = 4,
|
||||
dtype: str = "float16",
|
||||
upload_repo: str = None,
|
||||
):
|
||||
print("[INFO] Loading")
|
||||
weights, config, tokenizer = fetch_from_hub(args.hf_path)
|
||||
|
||||
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
||||
weights, config, tokenizer = fetch_from_hub(hf_path)
|
||||
dtype = mx.float16 if quantize else getattr(mx, dtype)
|
||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||
if args.quantize:
|
||||
if quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
weights, config = quantize_model(weights, config, hf_path, q_group_size, q_bits)
|
||||
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path = Path(mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
shards = make_shards(weights)
|
||||
for i, shard in enumerate(shards):
|
||||
@ -186,5 +195,11 @@ if __name__ == "__main__":
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
json.dump(config, fid, indent=4)
|
||||
|
||||
if args.upload_repo is not None:
|
||||
upload_to_hub(mlx_path, args.upload_repo, args.hf_path)
|
||||
if upload_repo is not None:
|
||||
upload_to_hub(mlx_path, upload_repo, hf_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = configure_parser()
|
||||
args = parser.parse_args()
|
||||
convert(**vars(args))
|
@ -2,7 +2,8 @@ import argparse
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
from utils import generate, load
|
||||
|
||||
from .utils import generate_step, load
|
||||
|
||||
DEFAULT_MODEL_PATH = "mlx_model"
|
||||
DEFAULT_PROMPT = "hello"
|
||||
@ -47,7 +48,9 @@ def main(args):
|
||||
tic = time.time()
|
||||
tokens = []
|
||||
skip = 0
|
||||
for token, n in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
||||
for token, n in zip(
|
||||
generate_step(prompt, model, args.temp), range(args.max_tokens)
|
||||
):
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
if n == 0:
|
@ -1,4 +1,4 @@
|
||||
mlx>=0.0.7
|
||||
mlx
|
||||
numpy
|
||||
transformers
|
||||
protobuf
|
@ -6,13 +6,12 @@ from typing import Generator, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||
|
||||
# Local imports
|
||||
import models.llama as llama
|
||||
import models.phi2 as phi2
|
||||
from huggingface_hub import snapshot_download
|
||||
from models.base import BaseModelArgs
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||
from .models import llama, phi2
|
||||
from .models.base import BaseModelArgs
|
||||
|
||||
# Constants
|
||||
MODEL_MAPPING = {
|
||||
@ -64,11 +63,11 @@ def get_model_path(path_or_hf_repo: str) -> Path:
|
||||
return model_path
|
||||
|
||||
|
||||
def generate(
|
||||
def generate_step(
|
||||
prompt: mx.array, model: nn.Module, temp: float = 0.0
|
||||
) -> Generator[mx.array, None, None]:
|
||||
"""
|
||||
Generate text based on the given prompt and model.
|
||||
A generator producing text based on the given prompt from the model.
|
||||
|
||||
Args:
|
||||
prompt (mx.array): The input prompt.
|
||||
@ -76,7 +75,7 @@ def generate(
|
||||
temp (float): The temperature for sampling. If temp is 0, use max sampling.
|
||||
|
||||
Yields:
|
||||
mx.array: The generated text.
|
||||
Generator[mx.array]: A generator producing one token per call.
|
||||
"""
|
||||
|
||||
def sample(logits: mx.array) -> mx.array:
|
||||
@ -95,6 +94,46 @@ def generate(
|
||||
yield y
|
||||
|
||||
|
||||
def generate(
|
||||
model: nn.Module,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt: str,
|
||||
temp: float = 0.0,
|
||||
max_tokens: int = 100,
|
||||
verbose: bool = False,
|
||||
) -> str:
|
||||
"""
|
||||
Generate text from the model.
|
||||
|
||||
Args:
|
||||
model (nn.Module): The language model.
|
||||
tokenizer (PreTrainedTokenizer): The tokenizer.
|
||||
prompt (str): The string prompt.
|
||||
temp (float): The temperature for sampling (default 0).
|
||||
max_tokens (int): The maximum number of tokens (default 100).
|
||||
"""
|
||||
|
||||
prompt = mx.array(tokenizer.encode(prompt))
|
||||
|
||||
tokens = []
|
||||
skip = 0
|
||||
for token, _ in zip(generate_step(prompt, model, temp), range(max_tokens)):
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
|
||||
tokens.append(token.item())
|
||||
|
||||
if verbose:
|
||||
s = tokenizer.decode(tokens)
|
||||
print(s[skip:], end="", flush=True)
|
||||
skip = len(s)
|
||||
|
||||
tokens = tokenizer.decode(tokens)[skip:]
|
||||
if verbose:
|
||||
print(tokens, flush=True)
|
||||
return tokens
|
||||
|
||||
|
||||
def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
|
||||
"""
|
||||
Load the model from a given path or a huggingface repository.
|
23
llms/setup.py
Normal file
23
llms/setup.py
Normal file
@ -0,0 +1,23 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
from setuptools import setup
|
||||
|
||||
with open(Path(__file__).parent / "mlx_lm/requirements.txt") as fid:
|
||||
requirements = [str(r) for r in pkg_resources.parse_requirements(fid)]
|
||||
setup(
|
||||
name="mlx-lm",
|
||||
version="0.0.1",
|
||||
description="LLMs on Apple silicon with MLX and the Hugging Face Hub",
|
||||
long_description=open("README.md", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
readme="README.md",
|
||||
author_email="mlx@group.apple.com",
|
||||
author="MLX Contributors",
|
||||
url="https://github.com/ml-explore/mlx-examples",
|
||||
license="MIT",
|
||||
install_requires=requirements,
|
||||
packages=["mlx_lm", "mlx_lm.models"],
|
||||
python_requires=">=3.8",
|
||||
)
|
Loading…
Reference in New Issue
Block a user