llama / mistral conversion in good shape

This commit is contained in:
Awni Hannun
2023-12-20 21:25:25 -08:00
parent aced530649
commit c8abd7906d
4 changed files with 58 additions and 30 deletions

View File

@@ -30,30 +30,32 @@ Face](https://huggingface.co/TinyLlama).
Convert the weights with:
```
python convert.py --model-path <path_to_torch_model>
python convert.py --torch-path <path_to_torch_model>
```
To generate a 4-bit quantized model use the `-q` flag:
```
python convert.py --model-path <path_to_torch_model> -q
python convert.py --torch-path <path_to_torch_model> -q
```
For TinyLlama use
```
python convert.py --model-path <path_to_torch_model> --model-name tiny_llama
python convert.py --torch-path <path_to_torch_model> --model-name tiny_llama
```
The conversion script will save the converted weights in the same location.
By default, the conversion script will make the directory `mlx_model` and save
the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
### Run
Once you've converted the weights to MLX format, you can interact with the
LlaMA model:
LlamA model:
```
python llama.py <path_to_model> <path_to_tokenizer.model> --prompt "hello"
python llama.py --prompt "hello"
```
Run `python llama.py --help` for more details.

View File

@@ -5,6 +5,7 @@ import collections
import copy
import glob
import json
import shutil
from pathlib import Path
import mlx.core as mx
@@ -62,9 +63,7 @@ def tiny_llama(model_path):
except ImportError as e:
print("The transformers package must be installed for this model conversion:")
print("pip install transformers")
import sys
sys.exit(0)
exit(0)
model = transformers.AutoModelForCausalLM.from_pretrained(
str(model_path)
@@ -119,7 +118,7 @@ def tiny_llama(model_path):
return weights, params
def quantize(weights, config):
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
@@ -129,10 +128,13 @@ def quantize(weights, config):
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.QuantizedLinear.quantize_module(model)
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
# Update the config:
quantized_config["quantization"] = {"group_size": 64, "bits": 4}
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
@@ -141,8 +143,15 @@ def quantize(weights, config):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
parser.add_argument(
"--model-path",
help="Path to the model. The MLX weights will also be saved there.",
"--torch-path",
type=str,
help="Path to the PyTorch model.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="Path to save the MLX model.",
)
parser.add_argument(
"--model-name",
@@ -157,21 +166,40 @@ if __name__ == "__main__":
parser.add_argument(
"-q",
"--quantize",
help="Generate a 4-bit quantized model.",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q_group_size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q_bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
model_path = Path(args.model_path)
torch_path = Path(args.torch_path)
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
print("[INFO] Loading")
weights, params = globals()[args.model_name](model_path)
weights, params = globals()[args.model_name](torch_path)
params["model_type"] = "llama"
if args.quantize:
print("[INFO] Quantizing")
weights, params = quantize(weights, params)
weights, params = quantize(weights, params, args)
print("[INFO] Saving")
np.savez(str(model_path / "weights.npz"), **weights)
with open(model_path / "config.json", "w") as fid:
shutil.copyfile(
str(torch_path / "tokenizer.model"),
str(mlx_path / "tokenizer.model"),
)
np.savez(str(mlx_path / "weights.npz"), **weights)
with open(mlx_path / "config.json", "w") as fid:
json.dump(params, fid, indent=4)

View File

@@ -360,15 +360,17 @@ def load_model(model_path):
if quantization is not None:
nn.QuantizedLinear.quantize_module(model, **quantization)
model.update(tree_unflatten(list(weights.items())))
return model
tokenizer = SentencePieceProcessor(model_file=str(model_path / "tokenizer.model"))
return model, tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Llama inference script")
parser.add_argument(
"model", help="Path to the model directory containing the MLX weights"
"--model-path",
help="Path to the model directory containing the MLX weights",
default="mlx_model",
)
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
parser.add_argument(
"--prompt",
help="The message to be processed by the model. Ignored when --few-shot is provided.",
@@ -393,9 +395,8 @@ if __name__ == "__main__":
mx.random.seed(args.seed)
tokenizer = SentencePieceProcessor(model_file=args.tokenizer)
print("[INFO] Loading model from disk.")
model = load_model(args.model)
model, tokenizer = load_model(args.model_path)
if args.few_shot:
few_shot_generate(args)
else:

View File

@@ -42,7 +42,7 @@ if __name__ == "__main__":
"--torch-path",
type=str,
default="mistral-7B-v0.1/",
help="The path to the PyTorch Mistral model.",
help="The path to the PyTorch model.",
)
parser.add_argument(
"--mlx-path",
@@ -53,7 +53,7 @@ if __name__ == "__main__":
parser.add_argument(
"-q",
"--quantize",
help="Generate a 4-bit quantized model.",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
@@ -84,9 +84,6 @@ if __name__ == "__main__":
weights, config = quantize(weights, config, args)
# Save weights
import pdb
pdb.set_trace()
np.savez(str(mlx_path / "weights.npz"), **weights)
# Copy tokenizer