Merge branch 'ml-explore:main' into prompt_lookup

This commit is contained in:
LeonEricsson 2023-12-28 22:17:53 +01:00 committed by GitHub
commit cb4464bb7b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 48 additions and 11 deletions

View File

@ -1,2 +1,3 @@
mlx
mlx-data
mlx-data
numpy

View File

@ -15,7 +15,6 @@ import torch
from llama import Llama, ModelArgs, sanitize_config
from mlx.utils import tree_flatten, tree_map, tree_unflatten
def llama(model_path):
SHARD_FIRST = ["wv", "wq", "wk", "w1", "w3", "output"]
SHARD_SECOND = ["tok_embeddings", "wo", "w2"]
@ -140,6 +139,22 @@ def quantize(weights, config, args):
return quantized_weights, quantized_config
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
max_file_size_bytes = max_file_size_gibibyte << 30
shards = []
shard, shard_size = {}, 0
for k, v in weights.items():
# TODO: simplify to v.nbytes as soon as mx.array exposes it
estimated_size = v.size * v.dtype.size if isinstance(v, mx.array) else v.nbytes
if shard_size + estimated_size > max_file_size_bytes:
shards.append(shard)
shard, shard_size = {}, 0
shard[k] = v
shard_size += estimated_size
shards.append(shard)
return shards
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
parser.add_argument(
@ -200,6 +215,11 @@ if __name__ == "__main__":
str(torch_path / "tokenizer.model"),
str(mlx_path / "tokenizer.model"),
)
np.savez(str(mlx_path / "weights.npz"), **weights)
shards = make_shards(weights)
if len(shards) == 1:
np.savez(str(mlx_path / f"weights.npz"), **shards[0])
else:
for i, shard in enumerate(shards):
np.savez(str(mlx_path / f"weights.{i:02d}.npz"), **shard)
with open(mlx_path / "config.json", "w") as fid:
json.dump(params, fid, indent=4)

View File

@ -3,6 +3,7 @@
import argparse
import json
import time
import glob
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
@ -66,7 +67,7 @@ class Attention(nn.Module):
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
B, L, D = x.shape
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
@ -330,7 +331,23 @@ def sanitize_config(config, weights):
def load_model(model_path):
model_path = Path(model_path)
weights = mx.load(str(model_path / "weights.npz"))
unsharded_weights_path = Path(model_path / "weights.npz")
if unsharded_weights_path.is_file():
print("[INFO] Loading model from {}.".format(unsharded_weights_path))
weights = mx.load(str(unsharded_weights_path))
else:
sharded_weights_glob = str(model_path / "weights.*.npz")
weight_files = glob.glob(sharded_weights_glob)
print("[INFO] Loading model from {}.".format(sharded_weights_glob))
if len(weight_files) == 0:
raise FileNotFoundError("No weights found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
with open(model_path / "config.json", "r") as f:
config = sanitize_config(json.loads(f.read()), weights)
quantization = config.pop("quantization", None)
@ -373,7 +390,6 @@ if __name__ == "__main__":
mx.random.seed(args.seed)
print("[INFO] Loading model from disk.")
model, tokenizer = load_model(args.model_path)
if args.few_shot:
few_shot_generate(args)

View File

@ -61,7 +61,7 @@ the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
As easy as:
```
python mixtral.py --model-path $MIXTRAL_MODEL/
python mixtral.py --model-path mlx_model
```
For more options including how to prompt the model, run:

View File

@ -60,7 +60,7 @@ def convert(args):
args.model, trust_remote_code=True, torch_dtype=torch.float16
)
state_dict = model.state_dict()
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
weights = {replace_key(k): (v.numpy() if v.dtype != torch.bfloat16 else v.to(torch.float32).numpy()) for k, v in state_dict.items()}
config = model.config.to_dict()
if args.quantize:

View File

@ -41,8 +41,8 @@ def decode(model, mels):
return decoding.decode(model, mels)
def everything():
return transcribe(audio_file)
def everything(model_name):
return transcribe(audio_file, model=model_name)
if __name__ == "__main__":
@ -99,6 +99,6 @@ if __name__ == "__main__":
print(f"Model forward time {model_forward_time:.3f}")
decode_time = timer(decode, model, mels)
print(f"Decode time {decode_time:.3f}")
everything_time = timer(everything)
everything_time = timer(everything, model_name)
print(f"Everything time {everything_time:.3f}")
print(f"\n{'-----' * 10}\n")