mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-26 09:08:08 +08:00
Phixtral (#290)
* initial * file * remove debug * Adding README * typo * simplify readme * nits in readmes --------- Co-authored-by: Marcel Bischoff <marcel.bischoff@awarehq.com> Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
262
llms/phixtral/phixtral.py
Normal file
262
llms/phixtral/phixtral.py
Normal file
@@ -0,0 +1,262 @@
|
||||
import glob
|
||||
import inspect
|
||||
import json
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_unflatten
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
max_sequence_length: int = 2048
|
||||
num_vocab: int = 51200
|
||||
model_dim: int = 2560
|
||||
num_heads: int = 32
|
||||
num_layers: int = 32
|
||||
rotary_dim: int = 32
|
||||
num_experts_per_tok: int = 2
|
||||
num_local_experts: int = 4
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, params):
|
||||
return cls(
|
||||
**{
|
||||
k: v
|
||||
for k, v in params.items()
|
||||
if k in inspect.signature(cls).parameters
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||
|
||||
|
||||
class RoPEAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
||||
self.Wqkv = nn.Linear(dims, 3 * dims)
|
||||
self.out_proj = nn.Linear(dims, dims)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
qkv = self.Wqkv(x)
|
||||
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
||||
|
||||
# Extract some shapes
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
# Add RoPE to the queries and keys and combine them with the cache
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
queries = queries.astype(mx.float32)
|
||||
keys = keys.astype(mx.float32)
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
|
||||
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, dim)
|
||||
self.act = nn.GELU(approx="precise")
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.fc2(self.act(self.fc1(x)))
|
||||
|
||||
|
||||
class MOE(nn.Module):
|
||||
def __init__(self, args: ModelArgs, dim: int, hidden_dim: int):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.hidden_dim = hidden_dim
|
||||
self.num_experts = args.num_local_experts
|
||||
self.num_experts_per_tok = args.num_experts_per_tok
|
||||
self.mlp = [MLP(self.dim, self.hidden_dim) for _ in range(self.num_experts)]
|
||||
self.gate = nn.Linear(args.model_dim, self.num_experts, bias=False)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
ne = self.num_experts_per_tok
|
||||
orig_shape = x.shape
|
||||
x = x.reshape(-1, x.shape[-1])
|
||||
|
||||
gates = self.gate(x)
|
||||
if ne < self.num_experts:
|
||||
inds = mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne]
|
||||
else:
|
||||
inds = mx.broadcast_to(mx.arange(ne), gates.shape)
|
||||
|
||||
scores = mx.softmax(
|
||||
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
|
||||
axis=-1,
|
||||
).astype(gates.dtype)
|
||||
|
||||
y = []
|
||||
for xt, st, it in zip(x, scores, inds.tolist()):
|
||||
yt = mx.concatenate([self.mlp[e](xt)[:, None] for e in it], axis=-1)
|
||||
yt = (yt * st).sum(axis=-1)
|
||||
y.append(yt[None, :])
|
||||
yc = mx.concatenate(y)
|
||||
|
||||
return yc.reshape(orig_shape)
|
||||
|
||||
|
||||
class ParallelBlock(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
dims = config.model_dim
|
||||
mlp_dims = dims * 4
|
||||
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
||||
self.ln = LayerNorm(dims)
|
||||
self.moe = MOE(config, dims, mlp_dims)
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
h = self.ln(x)
|
||||
attn_h, cache = self.mixer(h, mask, cache)
|
||||
ff_h = self.moe(h)
|
||||
return attn_h + ff_h + x, cache
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.embd = Embd(config)
|
||||
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
x = self.embd(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
|
||||
for e, layer in enumerate(self.h):
|
||||
x, cache[e] = layer(x, mask, cache[e])
|
||||
return x, cache
|
||||
|
||||
|
||||
class Embd(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.wte(x)
|
||||
|
||||
|
||||
class OutputHead(nn.Module):
|
||||
def __init__(self, config: ModelArgs) -> None:
|
||||
super().__init__()
|
||||
self.ln = LayerNorm(config.model_dim)
|
||||
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
||||
|
||||
def __call__(self, inputs):
|
||||
return self.linear(self.ln(inputs))
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.transformer = TransformerDecoder(config)
|
||||
self.lm_head = OutputHead(config)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache: mx.array = None,
|
||||
) -> tuple[mx.array, mx.array]:
|
||||
mask = None
|
||||
if x.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(x.dtype)
|
||||
|
||||
y, cache = self.transformer(x, mask, cache)
|
||||
return self.lm_head(y), cache
|
||||
|
||||
|
||||
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
y = prompt
|
||||
cache = None
|
||||
while True:
|
||||
logits, cache = model(y[None], cache=cache)
|
||||
logits = logits[:, -1, :]
|
||||
y = sample(logits)
|
||||
yield y
|
||||
|
||||
|
||||
def load(path_or_hf_repo: str):
|
||||
# If the path exists, it will try to load model form it
|
||||
# otherwise download and cache from the hf_repo and cache
|
||||
model_path = Path(path_or_hf_repo)
|
||||
if not model_path.exists():
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_hf_repo,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
)
|
||||
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
quantization = config.get("quantization", None)
|
||||
model_args = ModelArgs.from_dict(config)
|
||||
|
||||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
model = Model(model_args)
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
mx.eval(model.parameters())
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path,
|
||||
)
|
||||
return model, tokenizer
|
Reference in New Issue
Block a user