mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 18:11:17 +08:00
Phixtral (#290)
* initial * file * remove debug * Adding README * typo * simplify readme * nits in readmes --------- Co-authored-by: Marcel Bischoff <marcel.bischoff@awarehq.com> Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
a39b735c3b
commit
cd3cff0858
@ -84,7 +84,7 @@ You can upload new models to Hugging Face by specifying `--upload-repo` to
|
|||||||
python -m mlx_lm.convert \
|
python -m mlx_lm.convert \
|
||||||
--hf-path mistralai/Mistral-7B-v0.1 \
|
--hf-path mistralai/Mistral-7B-v0.1 \
|
||||||
-q \
|
-q \
|
||||||
--upload-repo mlx-community/my-4bit-mistral \
|
--upload-repo mlx-community/my-4bit-mistral
|
||||||
```
|
```
|
||||||
|
|
||||||
### Supported Models
|
### Supported Models
|
||||||
|
28
llms/phixtral/README.md
Normal file
28
llms/phixtral/README.md
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
# Phixtral
|
||||||
|
|
||||||
|
Phixtral is a Mixture of Experts (MoE) architecture inspired by
|
||||||
|
[Mixtral](../mixtral/README.md) but made by combinding fine-tuned versions of
|
||||||
|
Phi-2.[^1][^2]
|
||||||
|
|
||||||
|
### Setup
|
||||||
|
|
||||||
|
Install the dependencies:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
### Run
|
||||||
|
|
||||||
|
```
|
||||||
|
python generate.py \
|
||||||
|
--model mlabonne/phixtral-4x2_8 \
|
||||||
|
--prompt "write a quick sort in Python"
|
||||||
|
```
|
||||||
|
|
||||||
|
Run `python generate.py --help` to see all the options.
|
||||||
|
|
||||||
|
[^1]: For more details on Phixtral, see the [Hugging Face repo](https://huggingface.co/mlabonne/phixtral-4x2_8).
|
||||||
|
[^2]: For more details on Phi-2 see Microsoft's [blog post](
|
||||||
|
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
|
||||||
|
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2).
|
91
llms/phixtral/generate.py
Normal file
91
llms/phixtral/generate.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
# Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import time
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import phixtral
|
||||||
|
import transformers
|
||||||
|
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
model: phixtral.Model,
|
||||||
|
tokenizer: transformers.AutoTokenizer,
|
||||||
|
prompt: str,
|
||||||
|
max_tokens: int,
|
||||||
|
temp: float = 0.0,
|
||||||
|
):
|
||||||
|
print("[INFO] Generating with Phixtral...", flush=True)
|
||||||
|
print(prompt, end="", flush=True)
|
||||||
|
prompt = tokenizer(
|
||||||
|
prompt,
|
||||||
|
return_tensors="np",
|
||||||
|
return_attention_mask=False,
|
||||||
|
)[
|
||||||
|
"input_ids"
|
||||||
|
][0]
|
||||||
|
prompt = mx.array(prompt)
|
||||||
|
|
||||||
|
tic = time.time()
|
||||||
|
tokens = []
|
||||||
|
skip = 0
|
||||||
|
for token, n in zip(
|
||||||
|
phixtral.generate(prompt, model, temp),
|
||||||
|
range(max_tokens),
|
||||||
|
):
|
||||||
|
if token == tokenizer.eos_token_id:
|
||||||
|
break
|
||||||
|
|
||||||
|
if n == 0:
|
||||||
|
prompt_time = time.time() - tic
|
||||||
|
tic = time.time()
|
||||||
|
|
||||||
|
tokens.append(token.item())
|
||||||
|
# if (n + 1) % 10 == 0:
|
||||||
|
s = tokenizer.decode(tokens)
|
||||||
|
print(s[skip:], end="", flush=True)
|
||||||
|
skip = len(s)
|
||||||
|
print(tokenizer.decode(tokens)[skip:], flush=True)
|
||||||
|
gen_time = time.time() - tic
|
||||||
|
print("=" * 10)
|
||||||
|
if len(tokens) == 0:
|
||||||
|
print("No tokens generated for this prompt")
|
||||||
|
return
|
||||||
|
prompt_tps = prompt.size / prompt_time
|
||||||
|
gen_tps = (len(tokens) - 1) / gen_time
|
||||||
|
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
|
||||||
|
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="inference script")
|
||||||
|
parser.add_argument(
|
||||||
|
"--model",
|
||||||
|
type=str,
|
||||||
|
default="mlx_model",
|
||||||
|
help="The path to the local model directory or Hugging Face repo.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--prompt",
|
||||||
|
help="The message to be processed by the model",
|
||||||
|
default="Write a detailed analogy between mathematics and a lighthouse.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-tokens",
|
||||||
|
"-m",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="Maximum number of tokens to generate",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--temp",
|
||||||
|
help="The sampling temperature.",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
)
|
||||||
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
mx.random.seed(args.seed)
|
||||||
|
model, tokenizer = phixtral.load(args.model)
|
||||||
|
generate(model, tokenizer, args.prompt, args.max_tokens, args.temp)
|
262
llms/phixtral/phixtral.py
Normal file
262
llms/phixtral/phixtral.py
Normal file
@ -0,0 +1,262 @@
|
|||||||
|
import glob
|
||||||
|
import inspect
|
||||||
|
import json
|
||||||
|
import math
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
from mlx.utils import tree_unflatten
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs:
|
||||||
|
max_sequence_length: int = 2048
|
||||||
|
num_vocab: int = 51200
|
||||||
|
model_dim: int = 2560
|
||||||
|
num_heads: int = 32
|
||||||
|
num_layers: int = 32
|
||||||
|
rotary_dim: int = 32
|
||||||
|
num_experts_per_tok: int = 2
|
||||||
|
num_local_experts: int = 4
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_dict(cls, params):
|
||||||
|
return cls(
|
||||||
|
**{
|
||||||
|
k: v
|
||||||
|
for k, v in params.items()
|
||||||
|
if k in inspect.signature(cls).parameters
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class LayerNorm(nn.LayerNorm):
|
||||||
|
def __call__(self, x: mx.array) -> mx.array:
|
||||||
|
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||||
|
|
||||||
|
|
||||||
|
class RoPEAttention(nn.Module):
|
||||||
|
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.num_heads = num_heads
|
||||||
|
|
||||||
|
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
||||||
|
self.Wqkv = nn.Linear(dims, 3 * dims)
|
||||||
|
self.out_proj = nn.Linear(dims, dims)
|
||||||
|
|
||||||
|
def __call__(self, x, mask=None, cache=None):
|
||||||
|
qkv = self.Wqkv(x)
|
||||||
|
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
||||||
|
|
||||||
|
# Extract some shapes
|
||||||
|
num_heads = self.num_heads
|
||||||
|
B, L, D = queries.shape
|
||||||
|
|
||||||
|
# Prepare the queries, keys and values for the attention computation
|
||||||
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
# Add RoPE to the queries and keys and combine them with the cache
|
||||||
|
if cache is not None:
|
||||||
|
key_cache, value_cache = cache
|
||||||
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||||
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||||
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||||
|
values = mx.concatenate([value_cache, values], axis=2)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
|
||||||
|
queries = queries.astype(mx.float32)
|
||||||
|
keys = keys.astype(mx.float32)
|
||||||
|
|
||||||
|
# Finally perform the attention computation
|
||||||
|
scale = math.sqrt(1 / queries.shape[-1])
|
||||||
|
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||||
|
if mask is not None:
|
||||||
|
scores = scores + mask
|
||||||
|
|
||||||
|
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
||||||
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
|
||||||
|
return self.out_proj(values_hat), (keys, values)
|
||||||
|
|
||||||
|
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, dim, hidden_dim):
|
||||||
|
super().__init__()
|
||||||
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
||||||
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
||||||
|
self.act = nn.GELU(approx="precise")
|
||||||
|
|
||||||
|
def __call__(self, x) -> mx.array:
|
||||||
|
return self.fc2(self.act(self.fc1(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class MOE(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs, dim: int, hidden_dim: int):
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
self.hidden_dim = hidden_dim
|
||||||
|
self.num_experts = args.num_local_experts
|
||||||
|
self.num_experts_per_tok = args.num_experts_per_tok
|
||||||
|
self.mlp = [MLP(self.dim, self.hidden_dim) for _ in range(self.num_experts)]
|
||||||
|
self.gate = nn.Linear(args.model_dim, self.num_experts, bias=False)
|
||||||
|
|
||||||
|
def __call__(self, x) -> mx.array:
|
||||||
|
ne = self.num_experts_per_tok
|
||||||
|
orig_shape = x.shape
|
||||||
|
x = x.reshape(-1, x.shape[-1])
|
||||||
|
|
||||||
|
gates = self.gate(x)
|
||||||
|
if ne < self.num_experts:
|
||||||
|
inds = mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne]
|
||||||
|
else:
|
||||||
|
inds = mx.broadcast_to(mx.arange(ne), gates.shape)
|
||||||
|
|
||||||
|
scores = mx.softmax(
|
||||||
|
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
|
||||||
|
axis=-1,
|
||||||
|
).astype(gates.dtype)
|
||||||
|
|
||||||
|
y = []
|
||||||
|
for xt, st, it in zip(x, scores, inds.tolist()):
|
||||||
|
yt = mx.concatenate([self.mlp[e](xt)[:, None] for e in it], axis=-1)
|
||||||
|
yt = (yt * st).sum(axis=-1)
|
||||||
|
y.append(yt[None, :])
|
||||||
|
yc = mx.concatenate(y)
|
||||||
|
|
||||||
|
return yc.reshape(orig_shape)
|
||||||
|
|
||||||
|
|
||||||
|
class ParallelBlock(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
dims = config.model_dim
|
||||||
|
mlp_dims = dims * 4
|
||||||
|
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
||||||
|
self.ln = LayerNorm(dims)
|
||||||
|
self.moe = MOE(config, dims, mlp_dims)
|
||||||
|
|
||||||
|
def __call__(self, x, mask, cache):
|
||||||
|
h = self.ln(x)
|
||||||
|
attn_h, cache = self.mixer(h, mask, cache)
|
||||||
|
ff_h = self.moe(h)
|
||||||
|
return attn_h + ff_h + x, cache
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerDecoder(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.embd = Embd(config)
|
||||||
|
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
||||||
|
|
||||||
|
def __call__(self, x, mask, cache):
|
||||||
|
x = self.embd(x)
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.h)
|
||||||
|
|
||||||
|
for e, layer in enumerate(self.h):
|
||||||
|
x, cache[e] = layer(x, mask, cache[e])
|
||||||
|
return x, cache
|
||||||
|
|
||||||
|
|
||||||
|
class Embd(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return self.wte(x)
|
||||||
|
|
||||||
|
|
||||||
|
class OutputHead(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.ln = LayerNorm(config.model_dim)
|
||||||
|
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
||||||
|
|
||||||
|
def __call__(self, inputs):
|
||||||
|
return self.linear(self.ln(inputs))
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.transformer = TransformerDecoder(config)
|
||||||
|
self.lm_head = OutputHead(config)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: mx.array = None,
|
||||||
|
cache: mx.array = None,
|
||||||
|
) -> tuple[mx.array, mx.array]:
|
||||||
|
mask = None
|
||||||
|
if x.shape[1] > 1:
|
||||||
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||||
|
mask = mask.astype(x.dtype)
|
||||||
|
|
||||||
|
y, cache = self.transformer(x, mask, cache)
|
||||||
|
return self.lm_head(y), cache
|
||||||
|
|
||||||
|
|
||||||
|
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
||||||
|
def sample(logits):
|
||||||
|
if temp == 0:
|
||||||
|
return mx.argmax(logits, axis=-1)
|
||||||
|
else:
|
||||||
|
return mx.random.categorical(logits * (1 / temp))
|
||||||
|
|
||||||
|
y = prompt
|
||||||
|
cache = None
|
||||||
|
while True:
|
||||||
|
logits, cache = model(y[None], cache=cache)
|
||||||
|
logits = logits[:, -1, :]
|
||||||
|
y = sample(logits)
|
||||||
|
yield y
|
||||||
|
|
||||||
|
|
||||||
|
def load(path_or_hf_repo: str):
|
||||||
|
# If the path exists, it will try to load model form it
|
||||||
|
# otherwise download and cache from the hf_repo and cache
|
||||||
|
model_path = Path(path_or_hf_repo)
|
||||||
|
if not model_path.exists():
|
||||||
|
model_path = Path(
|
||||||
|
snapshot_download(
|
||||||
|
repo_id=path_or_hf_repo,
|
||||||
|
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
with open(model_path / "config.json", "r") as f:
|
||||||
|
config = json.loads(f.read())
|
||||||
|
quantization = config.get("quantization", None)
|
||||||
|
model_args = ModelArgs.from_dict(config)
|
||||||
|
|
||||||
|
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||||||
|
if len(weight_files) == 0:
|
||||||
|
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||||
|
|
||||||
|
weights = {}
|
||||||
|
for wf in weight_files:
|
||||||
|
weights.update(mx.load(wf).items())
|
||||||
|
|
||||||
|
model = Model(model_args)
|
||||||
|
if quantization is not None:
|
||||||
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||||
|
|
||||||
|
model.load_weights(list(weights.items()))
|
||||||
|
|
||||||
|
mx.eval(model.parameters())
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
)
|
||||||
|
return model, tokenizer
|
7
llms/phixtral/requirements.txt
Normal file
7
llms/phixtral/requirements.txt
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
einops
|
||||||
|
hf_transfer
|
||||||
|
huggingface_hub
|
||||||
|
mlx
|
||||||
|
numpy
|
||||||
|
torch
|
||||||
|
transformers>=4.35
|
@ -81,7 +81,7 @@ To fine-tune a model use:
|
|||||||
```
|
```
|
||||||
python lora.py --model <path_to_model> \
|
python lora.py --model <path_to_model> \
|
||||||
--train \
|
--train \
|
||||||
--iters 600 \
|
--iters 600
|
||||||
```
|
```
|
||||||
|
|
||||||
If `--model` points to a quantized model, then the training will use QLoRA,
|
If `--model` points to a quantized model, then the training will use QLoRA,
|
||||||
@ -100,7 +100,7 @@ To compute test set perplexity use:
|
|||||||
```
|
```
|
||||||
python lora.py --model <path_to_model> \
|
python lora.py --model <path_to_model> \
|
||||||
--adapter-file <path_to_adapters.npz> \
|
--adapter-file <path_to_adapters.npz> \
|
||||||
--test \
|
--test
|
||||||
```
|
```
|
||||||
|
|
||||||
### Generate
|
### Generate
|
||||||
@ -114,7 +114,7 @@ python lora.py --model <path_to_model> \
|
|||||||
--prompt "table: 1-10015132-16
|
--prompt "table: 1-10015132-16
|
||||||
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
|
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
|
||||||
Q: What is terrence ross' nationality
|
Q: What is terrence ross' nationality
|
||||||
A: " \
|
A: "
|
||||||
```
|
```
|
||||||
|
|
||||||
## Results
|
## Results
|
||||||
@ -211,7 +211,7 @@ python lora.py \
|
|||||||
--model mistralai/Mistral-7B-v0.1 \
|
--model mistralai/Mistral-7B-v0.1 \
|
||||||
--train \
|
--train \
|
||||||
--batch-size 1 \
|
--batch-size 1 \
|
||||||
--lora-layers 4 \
|
--lora-layers 4
|
||||||
```
|
```
|
||||||
|
|
||||||
The above command on an M1 Max with 32 GB runs at about 250 tokens-per-second.
|
The above command on an M1 Max with 32 GB runs at about 250 tokens-per-second.
|
||||||
|
Loading…
Reference in New Issue
Block a user