mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
update
This commit is contained in:
parent
0ae536c423
commit
d044db959d
@ -143,30 +143,36 @@ class Mamba2Block(nn.Module):
|
|||||||
dt = proj[..., -self.n_heads:]
|
dt = proj[..., -self.n_heads:]
|
||||||
|
|
||||||
# Process time steps - simplified to match PyTorch
|
# Process time steps - simplified to match PyTorch
|
||||||
dt = nn.softplus(dt + self.dt_bias)
|
dt = nn.softplus(dt + self.dt_bias) # Time steps may need scaling
|
||||||
|
dt = dt * (self.args.time_step_max - self.args.time_step_min) + self.args.time_step_min
|
||||||
|
dt = mx.minimum(mx.maximum(dt, self.args.time_step_floor), self.args.time_step_max)
|
||||||
|
|
||||||
# Convolution and activation
|
|
||||||
x_conv, conv_state = self.conv1d(x_conv, cache[0] if cache else None)
|
x_conv, conv_state = self.conv1d(x_conv, cache[0] if cache else None)
|
||||||
if cache is not None:
|
if cache is not None:
|
||||||
cache[0] = conv_state
|
cache[0] = conv_state
|
||||||
x_conv = silu(x_conv)
|
x_conv = silu(x_conv)
|
||||||
|
|
||||||
# Split conv output
|
# Split conv output and reshape
|
||||||
x = x_conv[..., :self.d_inner]
|
x = x_conv[..., :self.d_inner]
|
||||||
B = x_conv[..., self.d_inner:self.d_inner + self.d_state]
|
# B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, -1, self.d_state))
|
||||||
C = x_conv[..., -self.d_state:]
|
# C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, -1, self.d_state))
|
||||||
|
|
||||||
|
B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
|
||||||
|
C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
|
||||||
|
|
||||||
# Reshape for SSM processing
|
# Reshape for SSM processing
|
||||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
||||||
|
|
||||||
# Initialize state
|
# Initialize state
|
||||||
if cache and cache[1] is not None:
|
if cache and cache[1] is not None:
|
||||||
prev_state = cache[1]
|
# State initialization might need proper scaling
|
||||||
|
prev_state = cache[1] * self.args.initializer_range
|
||||||
else:
|
else:
|
||||||
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
|
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
|
||||||
|
|
||||||
# Compute dA - simplified to match PyTorch
|
# Compute dA - simplified to match PyTorch
|
||||||
A = -mx.exp(self.A_log)
|
# A = -mx.exp(self.A_log)
|
||||||
|
A = -mx.exp(self.A_log) * self.args.initializer_range
|
||||||
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
||||||
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
||||||
|
|
||||||
@ -182,7 +188,8 @@ class Mamba2Block(nn.Module):
|
|||||||
dAt = dA[:, t] # [batch, n_heads]
|
dAt = dA[:, t] # [batch, n_heads]
|
||||||
|
|
||||||
# Compute dBx using einsum to match PyTorch
|
# Compute dBx using einsum to match PyTorch
|
||||||
dBx = mx.einsum('bh,bn,bhp->bhpn', dAt, Bt, xt)
|
# dBx = mx.einsum('bh,bhd,bhp->bhpd', dAt, Bt, xt)
|
||||||
|
dBx = mx.einsum('bh,bhn,bhp->bhpn', dAt, Bt, xt)
|
||||||
|
|
||||||
# Update state - matches PyTorch implementation
|
# Update state - matches PyTorch implementation
|
||||||
next_state = (
|
next_state = (
|
||||||
@ -191,7 +198,8 @@ class Mamba2Block(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Compute output
|
# Compute output
|
||||||
yt = mx.einsum('bhpn,bn->bhp', next_state, Ct)
|
# yt = mx.einsum('bhpd,bhd->bhp', next_state, Ct)
|
||||||
|
yt = mx.einsum('bhpg,bgh->bhp', next_state, Ct)
|
||||||
yt = yt + xt * mx.expand_dims(self.D, -1)
|
yt = yt + xt * mx.expand_dims(self.D, -1)
|
||||||
|
|
||||||
# Reshape and normalize
|
# Reshape and normalize
|
||||||
|
Loading…
Reference in New Issue
Block a user