Load decoder weights

This commit is contained in:
Juarez Bochi 2023-12-15 10:50:04 -05:00
parent 009ed0179c
commit d0497ddc0b
No known key found for this signature in database
GPG Key ID: 34CCBB77DC8BEBB6
2 changed files with 91 additions and 17 deletions

View File

@ -1,23 +1,49 @@
from transformers import T5ForConditionalGeneration
import numpy as np
SHARED_REPLACEMENT_PATTERNS = [
(".block.", ".layers."),
(".k.", ".key_proj."),
(".o.", ".out_proj."),
(".q.", ".query_proj."),
(".v.", ".value_proj."),
("shared.", "wte."),
(".layer.0.layer_norm.", ".ln1."),
(".layer.1.layer_norm.", ".ln2."),
(".layer.2.layer_norm.", ".ln3."),
(".final_layer_norm.", ".ln."),
(
".layers.0.layer.0.SelfAttention.relative_attention_bias.",
".position_bias.relative_attention_bias."
),
]
ENCODER_REPLACEMENT_PATTERNS = [
(".layer.0.SelfAttention.", ".attention."),
(".layer.1.DenseReluDense.wi.", ".linear1."),
(".layer.1.DenseReluDense.wo.", ".linear2."),
]
DECODER_REPLACEMENT_PATTERNS = [
(".layer.0.SelfAttention.", ".self_attention."),
(".layer.1.EncDecAttention.", ".cross_attention."),
(".layer.2.DenseReluDense.wi.", ".linear1."),
(".layer.2.DenseReluDense.wo.", ".linear2."),
]
def replace_key(key: str) -> str:
key = key.replace(".block.", ".layers.")
key = key.replace(".layer.0.SelfAttention.", ".attention.")
key = key.replace(".k.", ".key_proj.")
key = key.replace(".o.", ".out_proj.")
key = key.replace(".q.", ".query_proj.")
key = key.replace(".v.", ".value_proj.")
key = key.replace(".layer.0.layer_norm.", ".ln1.")
key = key.replace(".layer.1.layer_norm.", ".ln2.")
key = key.replace(".layer.1.DenseReluDense.wi.", ".linear1.")
key = key.replace(".layer.1.DenseReluDense.wo.", ".linear2.")
key = key.replace(".final_layer_norm.", ".ln.")
key = key.replace("shared.", "wte.")
key = key.replace("encoder.layers.0.attention.relative_attention_bias.",
"position_bias.relative_attention_bias.")
for old, new in SHARED_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
if key.startswith("encoder."):
for old, new in ENCODER_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
elif key.startswith("decoder."):
for old, new in DECODER_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
return key
def convert():
model = T5ForConditionalGeneration.from_pretrained(
"t5-small", torch_dtype="auto"

View File

@ -181,7 +181,7 @@ class LayerNorm(nn.Module):
class TransformerEncoderLayer(nn.Module):
def __init__(self, config):
def __init__(self, config: ModelArgs):
super().__init__()
mlp_dims = config.d_ff or config.d_model * 4
self.attention = MultiHeadAttention(config.d_model, config.num_heads)
@ -212,6 +212,7 @@ class TransformerEncoder(nn.Module):
for _ in range(config.num_layers)
]
self.ln = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.position_bias = RelativePositionBias(config)
def __call__(self, x, mask):
for layer in self.layers:
@ -221,12 +222,59 @@ class TransformerEncoder(nn.Module):
return x
class TransformerDecoderLayer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
mlp_dims = config.d_ff or config.d_model * 4
self.self_attention = MultiHeadAttention(config.d_model, config.num_heads)
self.cross_attention = MultiHeadAttention(config.d_model, config.num_heads)
self.ln1 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.ln2 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.ln3 = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.linear1 = nn.Linear(config.d_model, mlp_dims, bias=False)
self.linear2 = nn.Linear(mlp_dims, config.d_model, bias=False)
def __call__(self, x, memory, x_mask, memory_mask):
y = self.ln1(x)
y = self.self_attention(y, y, y, x_mask)
x = x + y
y = self.ln2(x)
y = self.cross_attention(x, memory, memory, memory_mask)
x = x + y
y = self.ln3(x)
y = self.linear1(y)
y = mx.maximum(y, 0)
y = self.linear2(y)
x = x + y
return x
class TransformerDecoder(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.layers = [
TransformerDecoderLayer(config)
for _ in range(config.num_layers)
]
self.ln = LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.position_bias = RelativePositionBias(config)
def __call__(self, x, memory, x_mask, memory_mask):
for layer in self.layers:
x = layer(x, memory, x_mask, memory_mask)
x = self.ln(x)
return x
class T5(nn.Module):
def __init__(self, config: ModelArgs):
self.wte = nn.Embedding(config.vocab_size, config.d_model)
self.encoder = TransformerEncoder(config)
self.position_bias = RelativePositionBias(config)
# self.decoder = TransformerDecoder(config)
self.decoder = TransformerDecoder(config)
# self.lm_head = OutputHead(config)
def __call__(