more nits

This commit is contained in:
Awni Hannun
2023-12-15 10:06:14 -08:00
parent fa51553f09
commit d108c558fc
3 changed files with 27 additions and 25 deletions

View File

@@ -42,19 +42,21 @@ from Meta.
Convert the model with:
```
python convert.py <path_to_torch_model> <path_to_mlx_model>
python convert.py \
--torch-model <path_to_torch_model> \
--mlx-model <path_to_mlx_model>
```
## Run
#### Fine-tune
The main script is `lora.py`. To see a full list of options run
```
python lora.py --help
```
### Fine-tune
To fine-tune a model use:
```
@@ -67,28 +69,28 @@ Note, the model path should have the MLX weights, the tokenizer, and the
`params.json` configuration which will all be output by the `convert.py` script.
By default, the adapter weights are saved in `adapters.npz`. You can specify
the output location with `--adapter_file`.
the output location with `--adapter-file`.
You can resume fine-tuning with an existing adapter with
`--resume_adapter_file` to specify the location of the adapter weights.
You can resume fine-tuning with an existing adapter with `--resume-adapter-file
<path_to_adapters.npz>`.
#### Evaluate
### Evaluate
To compute test set perplexity use
```
python lora.py --model <path_to_model> \
--adapter_file <path_to_adapters.npz> \
--adapter-file <path_to_adapters.npz> \
--test
```
#### Generate
### Generate
For generation use
```
python lora.py --model <path_to_model> \
--adapter_file <path_to_adapters.npz> \
--adapter-file <path_to_adapters.npz> \
--num-tokens 50 \
--prompt "table: 1-10015132-16
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
@@ -119,10 +121,10 @@ You can make your own dataset for fine-tuning with LoRA. You can specify the
dataset with `--data=<my_data_directory>`. Check the subdirectory `data/` to
see the expected format.
For fine-tuning, the data loader expects a `train.jsonl` and a `valid.jsonl` to
be in the data directory. For evaluation (`--test`), the data loader expects a
`test.jsonl` in the directory. Each line in the `*.jsonl` file should look
like: are:
For fine-tuning (`--train`), the data loader expects a `train.jsonl` and a
`valid.jsonl` to be in the data directory. For evaluation (`--test`), the data
loader expects a `test.jsonl` in the data directory. Each line in the `*.jsonl`
file should look like:
```
{"text": "This is an example for the model."}