* Add MusicGen model

* add benchmarks

* change to from_pretrained

* symlinks

* add readme and requirements

* fix readme

* readme
This commit is contained in:
Alex Barron 2024-10-11 10:16:20 -07:00 committed by GitHub
parent 4360e7ccec
commit d72fdeb4ee
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
19 changed files with 722 additions and 245 deletions

View File

@ -33,13 +33,14 @@ An example using the model:
```python
import mlx.core as mx
from utils import load, load_audio, save_audio
from encodec import EncodecModel
from utils import load_audio, save_audio
# Load the 48 KHz model and preprocessor.
model, processor = load("mlx-community/encodec-48khz-float32")
model, processor = EncodecModel.from_pretrained("mlx-community/encodec-48khz-float32")
# Load an audio file
audio = load_audio("path/to/aduio", model.sampling_rate, model.channels)
audio = load_audio("path/to/audio", model.sampling_rate, model.channels)
# Preprocess the audio (this can also be a list of arrays for batched
# processing).

View File

@ -3,9 +3,10 @@
import time
import mlx.core as mx
from utils import load
model, processor = load("mlx-community/encodec-48khz-float32")
from encodec import EncodecModel
model, processor = EncodecModel.from_pretrained("mlx-community/encodec-48khz-float32")
audio = mx.random.uniform(shape=(288000, 2))
feats, mask = processor(audio)

View File

@ -10,7 +10,6 @@ from typing import Any, Dict, Union
import mlx.core as mx
import mlx.nn as nn
from huggingface_hub import snapshot_download
from mlx.utils import tree_flatten
import encodec

View File

@ -1,7 +1,10 @@
# Copyright © 2024 Apple Inc.
import functools
import json
import math
from dataclasses import dataclass
from pathlib import Path
from types import SimpleNamespace
from typing import List, Optional, Tuple, Union
import mlx.core as mx
@ -669,3 +672,70 @@ class EncodecModel(nn.Module):
if padding_mask is not None and padding_mask.shape[1] < audio_values.shape[1]:
audio_values = audio_values[:, : padding_mask.shape[1]]
return audio_values
@classmethod
def from_pretrained(cls, path_or_repo: str):
from huggingface_hub import snapshot_download
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "*.safetensors", "*.model"],
)
)
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
model = EncodecModel(config)
model.load_weights(str(path / "model.safetensors"))
processor = functools.partial(
preprocess_audio,
sampling_rate=config.sampling_rate,
chunk_length=model.chunk_length,
chunk_stride=model.chunk_stride,
)
mx.eval(model)
return model, processor
def preprocess_audio(
raw_audio: Union[mx.array, List[mx.array]],
sampling_rate: int = 24000,
chunk_length: Optional[int] = None,
chunk_stride: Optional[int] = None,
):
r"""
Prepare inputs for the EnCodec model.
Args:
raw_audio (mx.array or List[mx.array]): The sequence or batch of
sequences to be processed.
sampling_rate (int): The sampling rate at which the audio waveform
should be digitalized.
chunk_length (int, optional): The model's chunk length.
chunk_stride (int, optional): The model's chunk stride.
"""
if not isinstance(raw_audio, list):
raw_audio = [raw_audio]
raw_audio = [x[..., None] if x.ndim == 1 else x for x in raw_audio]
max_length = max(array.shape[0] for array in raw_audio)
if chunk_length is not None:
max_length += chunk_length - (max_length % chunk_stride)
inputs = []
masks = []
for x in raw_audio:
length = x.shape[0]
mask = mx.ones((length,), dtype=mx.bool_)
difference = max_length - length
if difference > 0:
mask = mx.pad(mask, (0, difference))
x = mx.pad(x, ((0, difference), (0, 0)))
inputs.append(x)
masks.append(mask)
return mx.stack(inputs), mx.stack(masks)

View File

@ -1,10 +1,12 @@
# Copyright © 2024 Apple Inc.
import mlx.core as mx
from utils import load, load_audio, save_audio
from utils import load_audio, save_audio
from encodec import EncodecModel
# Load the 48 KHz model and preprocessor.
model, processor = load("mlx-community/encodec-48khz-float32")
model, processor = EncodecModel.from_pretrained("mlx-community/encodec-48khz-float32")
# Load an audio file
audio = load_audio("/path/to/audio", model.sampling_rate, model.channels)

View File

@ -3,9 +3,10 @@
import mlx.core as mx
import numpy as np
import torch
from datasets import Audio, load_dataset
from transformers import AutoProcessor, EncodecModel
from utils import load, load_audio, preprocess_audio
from transformers import AutoProcessor
from transformers import EncodecModel as PTEncodecModel
from encodec import EncodecModel, preprocess_audio
def compare_processors():
@ -30,8 +31,8 @@ def compare_processors():
def compare_models():
pt_model = EncodecModel.from_pretrained("facebook/encodec_48khz")
mx_model, _ = load("mlx-community/encodec-48khz-float32")
pt_model = PTEncodecModel.from_pretrained("facebook/encodec_48khz")
mx_model, _ = EncodecModel.from_pretrained("mlx-community/encodec-48khz-float32")
np.random.seed(0)
audio_length = 190560

View File

@ -1,16 +1,7 @@
# Copyright © 2024 Apple Inc.
import functools
import json
from pathlib import Path
from types import SimpleNamespace
from typing import List, Optional, Union
import mlx.core as mx
import numpy as np
from huggingface_hub import snapshot_download
import encodec
def save_audio(file: str, audio: mx.array, sampling_rate: int):
@ -59,71 +50,3 @@ def load_audio(file: str, sampling_rate: int, channels: int):
out = mx.array(np.frombuffer(out, np.int16))
return out.reshape(-1, channels).astype(mx.float32) / 32767.0
def preprocess_audio(
raw_audio: Union[mx.array, List[mx.array]],
sampling_rate: int = 24000,
chunk_length: Optional[int] = None,
chunk_stride: Optional[int] = None,
):
r"""
Prepare inputs for the EnCodec model.
Args:
raw_audio (mx.array or List[mx.array]): The sequence or batch of
sequences to be processed.
sampling_rate (int): The sampling rate at which the audio waveform
should be digitalized.
chunk_length (int, optional): The model's chunk length.
chunk_stride (int, optional): The model's chunk stride.
"""
if not isinstance(raw_audio, list):
raw_audio = [raw_audio]
raw_audio = [x[..., None] if x.ndim == 1 else x for x in raw_audio]
max_length = max(array.shape[0] for array in raw_audio)
if chunk_length is not None:
max_length += chunk_length - (max_length % chunk_stride)
inputs = []
masks = []
for x in raw_audio:
length = x.shape[0]
mask = mx.ones((length,), dtype=mx.bool_)
difference = max_length - length
if difference > 0:
mask = mx.pad(mask, (0, difference))
x = mx.pad(x, ((0, difference), (0, 0)))
inputs.append(x)
masks.append(mask)
return mx.stack(inputs), mx.stack(masks)
def load(path_or_repo):
"""
Load the model and audo preprocessor.
"""
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "*.safetensors", "*.model"],
)
)
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
model = encodec.EncodecModel(config)
model.load_weights(str(path / "model.safetensors"))
processor = functools.partial(
preprocess_audio,
sampling_rate=config.sampling_rate,
chunk_length=model.chunk_length,
chunk_stride=model.chunk_stride,
)
mx.eval(model)
return model, processor

31
musicgen/README.md Normal file
View File

@ -0,0 +1,31 @@
# MusicGen
An example of Meta's MusicGen model in MLX.[^1] MusicGen is used to generate
music from text descriptions.
### Setup
Install the requirements:
```
pip install -r requirements.txt
```
### Example
An example using the model:
```python
import mlx.core as mx
from music_gen import MusicGen
from utils import save_audio
model = MusicGen.from_pretrained("facebook/musicgen-medium")
audio = model.generate("happy rock")
save_audio("out.wav", audio, model.sampling_rate)
```
[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2306.05284) and
[code](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md) for more details.

View File

@ -0,0 +1,28 @@
# Copyright © 2024 Apple Inc.
import sys
import time
from pathlib import Path
import mlx.core as mx
cur_path = Path(__file__).parents[1].resolve()
sys.path.append(str(cur_path))
from musicgen import MusicGen
text = "folk ballad"
model = MusicGen.from_pretrained("facebook/musicgen-medium")
max_steps = 100
audio = model.generate(text, max_steps=10)
mx.eval(audio)
tic = time.time()
audio = model.generate(text, max_steps=max_steps)
mx.eval(audio)
toc = time.time()
ms = 1000 * (toc - tic) / max_steps
print(f"Time (ms) per step: {ms:.3f}")

View File

@ -0,0 +1,31 @@
# Copyright © 2024 Apple Inc.
import time
import torch
from transformers import AutoProcessor, MusicgenForConditionalGeneration
model_name = "facebook/musicgen-medium"
processor = AutoProcessor.from_pretrained(model_name)
model = MusicgenForConditionalGeneration.from_pretrained(model_name).to("mps")
inputs = processor(
text=["folk ballad"],
padding=True,
return_tensors="pt",
)
inputs["input_ids"] = inputs["input_ids"].to("mps")
inputs["attention_mask"] = inputs["attention_mask"].to("mps")
# warmup
audio_values = model.generate(**inputs, max_new_tokens=10)
torch.mps.synchronize()
max_steps = 100
tic = time.time()
audio_values = model.generate(**inputs, max_new_tokens=max_steps)
torch.mps.synchronize()
toc = time.time()
ms = 1000 * (toc - tic) / max_steps
print(f"Time (ms) per step: {ms:.3f}")

1
musicgen/encodec.py Symbolic link
View File

@ -0,0 +1 @@
../encodec/encodec.py

23
musicgen/generate.py Normal file
View File

@ -0,0 +1,23 @@
# Copyright © 2024 Apple Inc.
import argparse
from utils import save_audio
from musicgen import MusicGen
def main(text: str, output_path: str, model_name: str, max_steps: int):
model = MusicGen.from_pretrained(model_name)
audio = model.generate(text, max_steps=max_steps)
save_audio(output_path, audio, model.sampling_rate)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=False, default="facebook/musicgen-medium")
parser.add_argument("--text", required=False, default="happy rock")
parser.add_argument("--output-path", required=False, default="0.wav")
parser.add_argument("--max-steps", required=False, default=500, type=int)
args = parser.parse_args()
main(args.text, args.output_path, args.model, args.max_steps)

358
musicgen/musicgen.py Normal file
View File

@ -0,0 +1,358 @@
# Copyright © 2024 Apple Inc.
import json
from functools import partial
from pathlib import Path
from types import SimpleNamespace
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
from tqdm import tqdm
from encodec import EncodecModel
from t5 import T5
class TextConditioner(nn.Module):
def __init__(self, t5_name, input_dim, output_dim):
super().__init__()
self._t5, self.tokenizer = T5.from_pretrained(t5_name)
self.output_proj = nn.Linear(input_dim, output_dim)
def __call__(self, text):
x = self.tokenizer.encode(text)
x = self._t5.encode(x)
return self.output_proj(x)
class KVCache:
def __init__(self, head_dim, n_kv_heads):
self.n_kv_heads = n_kv_heads
if isinstance(head_dim, int):
self.k_head_dim = self.v_head_dim = head_dim
elif isinstance(head_dim, tuple) and len(head_dim) == 2:
self.k_head_dim, self.v_head_dim = head_dim
else:
raise ValueError("head_dim must be an int or a tuple of two ints")
self.keys = None
self.values = None
self.offset = 0
self.step = 256
def update_and_fetch(self, keys, values):
prev = self.offset
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
B = keys.shape[0]
n_steps = (self.step + keys.shape[2] - 1) // self.step
k_shape = (B, self.n_kv_heads, n_steps * self.step, self.k_head_dim)
v_shape = (B, self.n_kv_heads, n_steps * self.step, self.v_head_dim)
new_k = mx.zeros(k_shape, keys.dtype)
new_v = mx.zeros(v_shape, values.dtype)
if self.keys is not None:
if prev % self.step != 0:
self.keys = self.keys[..., :prev, :]
self.values = self.values[..., :prev, :]
self.keys = mx.concatenate([self.keys, new_k], axis=2)
self.values = mx.concatenate([self.values, new_v], axis=2)
else:
self.keys, self.values = new_k, new_v
self.offset += keys.shape[2]
self.keys[..., prev : self.offset, :] = keys
self.values[..., prev : self.offset, :] = values
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
@property
def state(self):
return self.keys, self.values
class MultiHeadAttention(nn.Module):
def __init__(self, dim, n_heads):
super().__init__()
self.n_heads = n_heads
head_dim = dim // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.out_proj = nn.Linear(dim, dim, bias=False)
def __call__(
self,
queries: mx.array,
keys: mx.array,
values: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[KVCache] = None,
) -> mx.array:
B, L_q, D = queries.shape
L_k = keys.shape[1]
queries, keys, values = (
self.q_proj(queries),
self.k_proj(keys),
self.v_proj(values),
)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L_q, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L_q, -1)
return self.out_proj(output)
class TransformerBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.decoder.num_attention_heads
self.hidden_size = config.decoder.hidden_size
self.self_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
self.cross_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
self.linear1 = nn.Linear(self.hidden_size, config.decoder.ffn_dim, bias=False)
self.linear2 = nn.Linear(config.decoder.ffn_dim, self.hidden_size, bias=False)
self.norm1 = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.norm_cross = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.norm2 = nn.LayerNorm(self.hidden_size, eps=1e-5)
def __call__(
self,
x: mx.array,
conditioning: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[KVCache] = None,
) -> mx.array:
xn = self.norm1(x)
x += self.self_attn(xn, xn, xn, mask, cache)
xn = self.norm_cross(x)
x += self.cross_attn(xn, conditioning, conditioning, mask)
xn = self.norm2(x)
x += self.linear2(nn.gelu(self.linear1(xn)))
return x
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
def top_k_sampling(
logits: mx.array, top_k: float, temperature: float, axis: int = -1
) -> mx.array:
"""
Apply top-k sampling to logits.
Args:
logits: The logits from the model's output.
top_k: Sample from the top k logits.
temperature: Temperature parameter for softmax distribution reshaping.
axis: Axis along which to sample.
Returns:
token selected based on the top-k criterion.
"""
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
probs = mx.softmax(logits * (1 / temperature), axis=axis)
# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=axis)
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=axis)
prob_threshold = mx.take(sorted_probs, mx.array(-top_k), axis=axis)
# select the top K tokens in probability
top_probs = mx.where(
sorted_probs > prob_threshold,
sorted_probs,
0,
)
sorted_token = mx.random.categorical(mx.log(top_probs), axis=axis)
token = mx.take_along_axis(
sorted_indices, mx.expand_dims(sorted_token, axis), axis=axis
)
return token
def create_sin_embedding(positions: mx.array, dim: int, max_period: float = 10000):
assert dim % 2 == 0
half_dim = dim // 2
adim = mx.arange(half_dim).reshape(1, 1, -1)
phase = positions / (max_period ** (adim / (half_dim - 1)))
return mx.concatenate([mx.cos(phase), mx.sin(phase)], axis=-1)
class MusicGen(nn.Module):
def __init__(self, config):
self.num_codebooks = config.decoder.num_codebooks
self.codebook_size = config.audio_encoder.codebook_size
self.bos_token_id = config.decoder.bos_token_id
self.hidden_size = config.decoder.hidden_size
self.num_attention_heads = config.decoder.num_attention_heads
self.sampling_rate = config.audio_encoder.sampling_rate
self.text_conditioner = TextConditioner(
config.text_encoder._name_or_path,
config.text_encoder.d_model,
self.hidden_size,
)
self.emb = [
nn.Embedding(self.codebook_size + 1, self.hidden_size)
for _ in range(self.num_codebooks)
]
self.layers = [
TransformerBlock(config) for _ in range(config.decoder.num_hidden_layers)
]
self.out_norm = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.linears = [
nn.Linear(self.hidden_size, self.codebook_size, bias=False)
for _ in range(self.num_codebooks)
]
encodec_name = config.audio_encoder._name_or_path.split("/")[-1]
encodec_name = encodec_name.replace("_", "-")
self._audio_decoder, _ = EncodecModel.from_pretrained(
f"mlx-community/{encodec_name}-float32"
)
def __call__(
self,
audio_tokens: mx.array,
conditioning: mx.array,
cache: list[KVCache] = None,
):
if cache is None:
cache = [None] * len(self.layers)
x = sum([self.emb[k](audio_tokens[..., k]) for k in range(self.num_codebooks)])
offset = cache[0].offset if cache[0] is not None else 0
pos_emb = create_sin_embedding(offset, self.hidden_size)
x += pos_emb.astype(x.dtype)
for layer, c in zip(self.layers, cache):
x = layer(x, conditioning, cache=c)
x = self.out_norm(x)
x = mx.stack([self.linears[k](x) for k in range(self.num_codebooks)], axis=-1)
return x
def generate(
self,
text: str,
max_steps: int = 200,
top_k: int = 250,
temp: float = 1.0,
guidance_coef: float = 3.0,
) -> mx.array:
"""
Generates a waveform conditioned on `text`.
Args:
text (str): The text to condition generation on.
max_steps (int): Max steps to generate.
top_k (int): Top k used in sampling.
temp (float): Sampling softmax temperature.
guidance_coef (float): Classifier free guidance coefficent.
Used to combine conditional and unconditional logits.
Returns:
An mx.array of audio samples of shape ``(num_samples,)``.
"""
# Assuming no audio prompt we start with all bos token for the codebooks
audio_shape = (1, max_steps + 1, self.num_codebooks)
audio_seq = mx.full(audio_shape, self.bos_token_id)
text_tokens = self.text_conditioner(text)
# Compute conditional and unconditional logits in one batch
text_tokens = mx.concatenate([text_tokens, mx.zeros_like(text_tokens)], axis=0)
head_dim = self.hidden_size // self.num_attention_heads
cache = [
KVCache(head_dim, self.num_attention_heads) for _ in range(len(self.layers))
]
for offset in tqdm(range(max_steps)):
audio_input = mx.tile(audio_seq[:, offset : offset + 1], [2, 1, 1])
audio_logits = self(audio_input, text_tokens, cache)
cond_logits, uncond_logits = audio_logits[:1], audio_logits[1:2]
audio_logits = uncond_logits + (cond_logits - uncond_logits) * guidance_coef
audio_tokens = top_k_sampling(audio_logits, top_k, temp, axis=-2)
# "delay" pattern
audio_tokens[..., offset + 1 :] = self.bos_token_id
audio_tokens[..., : -max_steps + offset] = self.bos_token_id
audio_seq[:, offset + 1 : offset + 2] = audio_tokens
mx.eval(audio_seq)
# Undo delay
for i in range(self.num_codebooks):
audio_seq[:, : -self.num_codebooks, i] = audio_seq[
:, i : -self.num_codebooks + i, i
]
audio_seq = audio_seq[:, 1 : -self.num_codebooks + 1]
audio_seq = mx.swapaxes(audio_seq, -1, -2)[:, mx.newaxis]
audio = self._audio_decoder.decode(audio_seq, audio_scales=[None])
return audio[0]
@classmethod
def sanitize(cls, weights):
out_weights = {}
for k, arr in weights.items():
if k.startswith("transformer."):
k = k[len("transformer.") :]
if "cross_attention" in k:
k = k.replace("cross_attention", "cross_attn")
if "condition_provider" in k:
k = k.replace(
"condition_provider.conditioners.description", "text_conditioner"
)
if "in_proj_weight" in k:
dim = arr.shape[0] // 3
name = "in_proj_weight"
out_weights[k.replace(name, "q_proj.weight")] = arr[:dim]
out_weights[k.replace(name, "k_proj.weight")] = arr[dim : dim * 2]
out_weights[k.replace(name, "v_proj.weight")] = arr[dim * 2 :]
continue
out_weights[k] = arr
return out_weights
@classmethod
def from_pretrained(cls, path_or_repo: str):
import torch
from huggingface_hub import snapshot_download
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "state_dict.bin"],
)
)
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
config.text_encoder = SimpleNamespace(**config.text_encoder)
config.audio_encoder = SimpleNamespace(**config.audio_encoder)
config.decoder = SimpleNamespace(**config.decoder)
weights = torch.load(path / "state_dict.bin", weights_only=True)["best_state"]
weights = {k: mx.array(v) for k, v in weights.items()}
weights = cls.sanitize(weights)
model = MusicGen(config)
model.load_weights(list(weights.items()))
return model

View File

@ -0,0 +1,6 @@
mlx>=0.18
numpy
huggingface_hub
torch
transformers
scipy

1
musicgen/t5.py Symbolic link
View File

@ -0,0 +1 @@
../t5/t5.py

15
musicgen/utils.py Normal file
View File

@ -0,0 +1,15 @@
# Copyright © 2024 Apple Inc.
import mlx.core as mx
import numpy as np
def save_audio(file: str, audio: mx.array, sampling_rate: int):
"""
Save audio to a wave (.wav) file.
"""
from scipy.io.wavfile import write
audio = mx.clip(audio, -1, 1)
audio = (audio * 32767).astype(mx.int16)
write(file, sampling_rate, np.array(audio))

View File

@ -7,31 +7,6 @@ tasks by prepending task-specific prefixes to the input, e.g.:
This example also supports the FLAN-T5 models variants.[^2]
## Setup
Download and convert the model:
```sh
python convert.py --model <model>
```
This will make the `<model>.npz` file which MLX can read.
The `<model>` can be any of the following:
| Model Name | Model Size |
| ---------- | ----------
| t5-small | 60 million |
| t5-base | 220 million |
| t5-large | 770 million |
| t5-3b | 3 billion |
| t5-11b | 11 billion |
The FLAN variants can be specified with `google/flan-t5-small`,
`google/flan-t5-base`, etc. See the [Hugging Face
page](https://huggingface.co/docs/transformers/model_doc/flan-t5) for a
complete list of models.
## Generate
Generate text with:
@ -48,6 +23,21 @@ To see a list of options run:
python t5.py --help
```
The `<model>` can be any of the following:
| Model Name | Model Size |
| ---------- | ----------
| t5-small | 60 million |
| t5-base | 220 million |
| t5-large | 770 million |
| t5-3b | 3 billion |
| t5-11b | 11 billion |
The FLAN variants can be specified with `google/flan-t5-small`,
`google/flan-t5-base`, etc. See the [Hugging Face
page](https://huggingface.co/docs/transformers/model_doc/flan-t5) for a
complete list of models.
[^1]: For more information on T5 see the [original paper](https://arxiv.org/abs/1910.10683)
or the [Hugging Face page](https://huggingface.co/docs/transformers/model_doc/t5).
[^2]: For more information on FLAN-T5 see the [original paper](https://arxiv.org/abs/2210.11416).

View File

@ -1,75 +0,0 @@
import numpy as np
from transformers import T5ForConditionalGeneration
SHARED_REPLACEMENT_PATTERNS = [
(".block.", ".layers."),
(".k.", ".key_proj."),
(".o.", ".out_proj."),
(".q.", ".query_proj."),
(".v.", ".value_proj."),
("shared.", "wte."),
("lm_head.", "lm_head.linear."),
(".layer.0.layer_norm.", ".ln1."),
(".layer.1.layer_norm.", ".ln2."),
(".layer.2.layer_norm.", ".ln3."),
(".final_layer_norm.", ".ln."),
(
"layers.0.layer.0.SelfAttention.relative_attention_bias.",
"relative_attention_bias.embeddings.",
),
]
ENCODER_REPLACEMENT_PATTERNS = [
(".layer.0.SelfAttention.", ".attention."),
(".layer.1.DenseReluDense.", ".dense."),
]
DECODER_REPLACEMENT_PATTERNS = [
(".layer.0.SelfAttention.", ".self_attention."),
(".layer.1.EncDecAttention.", ".cross_attention."),
(".layer.2.DenseReluDense.", ".dense."),
]
def replace_key(key: str) -> str:
for old, new in SHARED_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
if key.startswith("encoder."):
for old, new in ENCODER_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
elif key.startswith("decoder."):
for old, new in DECODER_REPLACEMENT_PATTERNS:
key = key.replace(old, new)
return key
def convert(model_name, dtype):
dtype = getattr(np, dtype)
model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto")
weights = {
replace_key(k): v.numpy().astype(dtype) for k, v in model.state_dict().items()
}
file_name = model_name.replace("/", "-")
print(f"Saving weights to {file_name}.npz")
np.savez(f"{file_name}.npz", **weights)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Convert T5 weights to MLX")
parser.add_argument(
"--model",
type=str,
help="Name of the T5 model.",
default="t5-small",
)
parser.add_argument(
"--dtype",
help="The model data type.",
type=str,
choices=["float16", "float32"],
default="float32",
)
args = parser.parse_args()
convert(args.model, args.dtype)

181
t5/t5.py
View File

@ -1,12 +1,45 @@
import argparse
import json
from pathlib import Path
from time import perf_counter_ns
from types import SimpleNamespace
from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_map, tree_unflatten
from transformers import AutoTokenizer, T5Config
from transformers import AutoTokenizer
class Tokenizer:
def __init__(self, config, model_name):
self._decoder_start_id = config.decoder_start_token_id
self._tokenizer = AutoTokenizer.from_pretrained(
model_name,
legacy=False,
model_max_length=getattr(config, "n_positions", 512),
)
@property
def eos_id(self) -> int:
return self._tokenizer.eos_token_id
@property
def decoder_start_id(self) -> int:
return self._decoder_start_id
def encode(self, s: str) -> mx.array:
return mx.array(
self._tokenizer(
s,
return_tensors="np",
return_attention_mask=False,
)["input_ids"]
)
def decode(self, t: List[int], with_sep: bool = True) -> str:
tokens = self._tokenizer.convert_ids_to_tokens(t)
return "".join(t.replace("", " " if with_sep else "") for t in tokens)
def _relative_position_bucket(
@ -60,10 +93,10 @@ def _relative_position_bucket(
class RelativePositionBias(nn.Module):
def __init__(self, config: T5Config, bidirectional: bool):
def __init__(self, config, bidirectional: bool):
self.bidirectional = bidirectional
self.num_buckets = config.relative_attention_num_buckets
self.max_distance = config.relative_attention_max_distance
self.max_distance = getattr(config, "relative_attention_max_distance", 128)
self.n_heads = config.num_heads
self.embeddings = nn.Embedding(
config.relative_attention_num_buckets, config.num_heads
@ -91,7 +124,7 @@ class RelativePositionBias(nn.Module):
class MultiHeadAttention(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
super().__init__()
inner_dim = config.d_kv * config.num_heads
self.num_heads = config.num_heads
@ -135,17 +168,21 @@ class MultiHeadAttention(nn.Module):
class DenseActivation(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
super().__init__()
mlp_dims = config.d_ff or config.d_model * 4
self.gated = config.feed_forward_proj.startswith("gated")
self.gated = hasattr(config, "feed_forward_proj")
activation = (
"relu"
if not self.gated
else config.feed_forward_proj.removeprefix("gated-")
)
if self.gated:
self.wi_0 = nn.Linear(config.d_model, mlp_dims, bias=False)
self.wi_1 = nn.Linear(config.d_model, mlp_dims, bias=False)
else:
self.wi = nn.Linear(config.d_model, mlp_dims, bias=False)
self.wo = nn.Linear(mlp_dims, config.d_model, bias=False)
activation = config.feed_forward_proj.removeprefix("gated-")
if activation == "relu":
self.act = nn.relu
elif activation == "gelu":
@ -166,7 +203,7 @@ class DenseActivation(nn.Module):
class TransformerEncoderLayer(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
super().__init__()
self.attention = MultiHeadAttention(config)
self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
@ -184,7 +221,7 @@ class TransformerEncoderLayer(nn.Module):
class TransformerEncoder(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
super().__init__()
self.layers = [
TransformerEncoderLayer(config) for i in range(config.num_layers)
@ -200,7 +237,7 @@ class TransformerEncoder(nn.Module):
class TransformerDecoderLayer(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
super().__init__()
self.self_attention = MultiHeadAttention(config)
self.cross_attention = MultiHeadAttention(config)
@ -233,7 +270,7 @@ class TransformerDecoderLayer(nn.Module):
class TransformerDecoder(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
super().__init__()
n_layers = getattr(config, "num_decoder_layers", config.num_layers)
self.layers = [TransformerDecoderLayer(config) for i in range(n_layers)]
@ -262,7 +299,7 @@ class TransformerDecoder(nn.Module):
class OutputHead(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
self.linear = nn.Linear(config.d_model, config.vocab_size, bias=False)
def __call__(self, inputs):
@ -270,11 +307,11 @@ class OutputHead(nn.Module):
class T5(nn.Module):
def __init__(self, config: T5Config):
def __init__(self, config):
self.wte = nn.Embedding(config.vocab_size, config.d_model)
self.encoder = TransformerEncoder(config)
self.decoder = TransformerDecoder(config)
self.tie_word_embeddings = config.tie_word_embeddings
self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
if not self.tie_word_embeddings:
self.lm_head = OutputHead(config)
self.model_dim = config.d_model
@ -313,36 +350,82 @@ class T5(nn.Module):
):
return self.decode(decoder_inputs, self.encode(inputs))[0]
@classmethod
def sanitize(cls, weights):
shared_replacement_patterns = [
(".block.", ".layers."),
(".k.", ".key_proj."),
(".o.", ".out_proj."),
(".q.", ".query_proj."),
(".v.", ".value_proj."),
("shared.", "wte."),
("lm_head.", "lm_head.linear."),
(".layer.0.layer_norm.", ".ln1."),
(".layer.1.layer_norm.", ".ln2."),
(".layer.2.layer_norm.", ".ln3."),
(".final_layer_norm.", ".ln."),
(
"layers.0.layer.0.SelfAttention.relative_attention_bias.",
"relative_attention_bias.embeddings.",
),
]
class Tokenizer:
def __init__(self, config: T5Config):
self._decoder_start_id = config.decoder_start_token_id
self._tokenizer = AutoTokenizer.from_pretrained(
args.model,
legacy=False,
model_max_length=getattr(config, "n_positions", 512),
encoder_replacement_patterns = [
(".layer.0.SelfAttention.", ".attention."),
(".layer.1.DenseReluDense.", ".dense."),
]
decoder_replacement_patterns = [
(".layer.0.SelfAttention.", ".self_attention."),
(".layer.1.EncDecAttention.", ".cross_attention."),
(".layer.2.DenseReluDense.", ".dense."),
]
ignored_keys = [
"decoder.layers.0.cross_attention.relative_attention_bias.weight"
]
def replace_key(key: str) -> str:
for old, new in shared_replacement_patterns:
key = key.replace(old, new)
if key.startswith("encoder."):
for old, new in encoder_replacement_patterns:
key = key.replace(old, new)
elif key.startswith("decoder."):
for old, new in decoder_replacement_patterns:
key = key.replace(old, new)
return key
weights = {replace_key(k): v for k, v in weights.items()}
for key in ignored_keys:
if key in weights:
del weights[key]
return weights
@classmethod
def from_pretrained(
cls, path_or_repo: str, dtype: mx.Dtype = mx.bfloat16
) -> tuple["T5", Tokenizer]:
from huggingface_hub import snapshot_download
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "*.safetensors", "*.model"],
)
)
@property
def eos_id(self) -> int:
return self._tokenizer.eos_token_id
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
@property
def decoder_start_id(self) -> int:
return self._decoder_start_id
def encode(self, s: str) -> mx.array:
return mx.array(
self._tokenizer(
s,
return_tensors="np",
return_attention_mask=False,
)["input_ids"]
)
def decode(self, t: List[int], with_sep: bool = True) -> str:
tokens = self._tokenizer.convert_ids_to_tokens(t)
return "".join(t.replace("", " " if with_sep else "") for t in tokens)
model = T5(config)
weights = mx.load(str(path / "model.safetensors"))
weights = cls.sanitize(weights)
weights = {k: v.astype(dtype) for k, v in weights.items()}
model.load_weights(list(weights.items()))
return model, Tokenizer(config, "t5-base")
def generate(prompt: str, model: T5, tokenizer: Tokenizer, temp: Optional[float] = 0.0):
@ -363,19 +446,6 @@ def generate(prompt: str, model: T5, tokenizer: Tokenizer, temp: Optional[float]
yield y.squeeze()
def load_model(model_name: str, dtype: str = "float16"):
config = T5Config.from_pretrained(args.model)
dtype = getattr(mx, dtype)
model = T5(config)
file_name = model_name.replace("/", "-")
weights = mx.load(f"{file_name}.npz")
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: p.astype(dtype), weights)
model.update(weights)
mx.eval(model.parameters())
return model, Tokenizer(config)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="T5 Inference script")
parser.add_argument(
@ -421,7 +491,8 @@ if __name__ == "__main__":
mx.random.seed(args.seed)
model, tokenizer = load_model(args.model, args.dtype)
dtype = getattr(mx, args.dtype)
model, tokenizer = T5.from_pretrained(args.model, dtype)
if args.encode_only:
print("[INFO] Encoding with T5...", flush=True)