Made mypy compatible

This commit is contained in:
paramthakkar123 2025-04-04 07:34:43 +05:30
parent c52cc748f8
commit d7cab9d5f5
4 changed files with 13 additions and 9 deletions

View File

@ -40,7 +40,7 @@ def generate(
if len(tokens) == 0:
print("No tokens generated for this prompt")
return
prompt_tps = prompt.size / prompt_time
prompt_tps = len(prompt) / prompt_time
gen_tps = (len(tokens) - 1) / gen_time
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
print(f"Generation: {gen_tps:.3f} tokens-per-sec")

View File

@ -19,10 +19,10 @@ class ModelArgs:
rms_norm_eps: float
vocab_size: int
context_length: int
num_key_value_heads: int = None
num_key_value_heads: Optional[int] = None
rope_theta: float = 10000
rope_traditional: bool = False
model_type: str = None
model_type: Optional[str] = None
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
def __post_init__(self):
@ -54,7 +54,7 @@ class Attention(nn.Module):
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads or n_heads
self.repeats = n_heads // n_kv_heads
@ -66,7 +66,7 @@ class Attention(nn.Module):
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
rope_scale = (
1 / args.rope_scaling["factor"]
1 / float(args.rope_scaling["factor"])
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
else 1
)
@ -254,7 +254,7 @@ def translate_weight_names(name):
return name
def load(gguf_file: str, repo: str = None):
def load(gguf_file: str, repo: Optional[str] = None):
# If the gguf_file exists, try to load model from it.
# Otherwise try to download and cache from the HF repo
if not Path(gguf_file).exists():

View File

@ -7,7 +7,7 @@ import glob
import json
import shutil
from pathlib import Path
from typing import Dict
import mlx.core as mx
import mlx.nn as nn
import torch
@ -149,7 +149,8 @@ def quantize(weights, config, args):
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
max_file_size_bytes = max_file_size_gibibyte << 30
shards = []
shard, shard_size = {}, 0
shard : Dict[str, mx.array] = {}
shard_size = 0
for k, v in weights.items():
if shard_size + v.nbytes > max_file_size_bytes:
shards.append(shard)

View File

@ -23,7 +23,7 @@ class ModelArgs:
n_kv_heads: int
norm_eps: float
vocab_size: int
moe: dict = None
moe: Optional[dict] = None
class Attention(nn.Module):
@ -91,6 +91,9 @@ class FeedForward(nn.Module):
class MOEFeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
if args.moe is None:
raise ValueError("args.moe must not be None for MOEFeedForward")
self.num_experts = args.moe["num_experts"]
self.num_experts_per_tok = args.moe["num_experts_per_tok"]