mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 16:16:27 +08:00
Generalize prompt_feature and completion_feature for use in local datasets to facilitate compatibility with many other training dataset formats.
This commit is contained in:
parent
bf2da36fc6
commit
db9898d104
@ -247,8 +247,18 @@ Refer to the documentation for the model you are fine-tuning for more details.
|
||||
{"text": "This is an example for the model."}
|
||||
```
|
||||
|
||||
Note, the format is automatically determined by the dataset. Note also, keys in
|
||||
each line not expected by the loader will be ignored.
|
||||
Note, the format is automatically determined by the dataset.
|
||||
|
||||
For the completion data format, a different key can be used for the _prompt_ and for the _completion_ by specifying
|
||||
the following, for example, in the YAML config:
|
||||
|
||||
```yaml
|
||||
prompt_feature: "input"
|
||||
completion_feature: "output"
|
||||
```
|
||||
|
||||
Here, `input` is now the expected key instead of "prompt" and `output` is the expected key instead of "completion".
|
||||
Note also, keys in each line not expected by the loader will be ignored.
|
||||
|
||||
> [!NOTE]
|
||||
> Each example in the datasets must be on a single line. Do not put more than
|
||||
@ -270,7 +280,7 @@ Otherwise, provide a mapping of keys in the dataset to the features MLX LM
|
||||
expects. Use a YAML config to specify the Hugging Face dataset arguments. For
|
||||
example:
|
||||
|
||||
```
|
||||
```yaml
|
||||
hf_dataset:
|
||||
name: "billsum"
|
||||
prompt_feature: "text"
|
||||
|
@ -61,6 +61,8 @@ CONFIG_DEFAULTS = {
|
||||
"config": None,
|
||||
"grad_checkpoint": False,
|
||||
"lr_schedule": None,
|
||||
"prompt_feature": "prompt",
|
||||
"completion_feature": "completion",
|
||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||
}
|
||||
|
||||
|
@ -81,12 +81,20 @@ class CompletionsDataset:
|
||||
return len(self._data)
|
||||
|
||||
|
||||
def create_dataset(data, tokenizer: PreTrainedTokenizer):
|
||||
<<<<<<< HEAD
|
||||
def create_dataset(
|
||||
data,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_feature: Optional[str] = None,
|
||||
completion_feature: Optional[str] = None,
|
||||
):
|
||||
sample = data[0]
|
||||
prompt_feature = prompt_feature or "prompt"
|
||||
completion_feature = completion_feature or "completion"
|
||||
|
||||
if "messages" in sample:
|
||||
return ChatDataset(data, tokenizer)
|
||||
elif "prompt" in sample and "completion" in sample:
|
||||
elif prompt_feature in sample and completion_feature in sample:
|
||||
return CompletionsDataset(data, tokenizer)
|
||||
elif "text" in sample:
|
||||
return Dataset(data, tokenizer)
|
||||
@ -97,20 +105,30 @@ def create_dataset(data, tokenizer: PreTrainedTokenizer):
|
||||
)
|
||||
|
||||
|
||||
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
|
||||
def load_local_dataset(
|
||||
data_path: Path,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_feature: str = None,
|
||||
completion_feature: str = None,
|
||||
):
|
||||
def load_subset(path):
|
||||
if not path.exists():
|
||||
return []
|
||||
with open(path, "r") as fid:
|
||||
data = [json.loads(l) for l in fid]
|
||||
return create_dataset(data, tokenizer)
|
||||
return create_dataset(data, tokenizer, prompt_feature, completion_feature)
|
||||
|
||||
names = ("train", "valid", "test")
|
||||
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
||||
return train, valid, test
|
||||
|
||||
|
||||
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
|
||||
def load_hf_dataset(
|
||||
data_id: str,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_feature: str = None,
|
||||
completion_feature: str = None,
|
||||
):
|
||||
from datasets import exceptions, load_dataset
|
||||
|
||||
try:
|
||||
@ -119,7 +137,13 @@ def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
|
||||
names = ("train", "valid", "test")
|
||||
|
||||
train, valid, test = [
|
||||
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
|
||||
(
|
||||
create_dataset(
|
||||
dataset[n], tokenizer, prompt_feature, completion_feature
|
||||
)
|
||||
if n in dataset.keys()
|
||||
else []
|
||||
)
|
||||
for n in names
|
||||
]
|
||||
|
||||
@ -176,10 +200,14 @@ def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
else:
|
||||
data_path = Path(args.data)
|
||||
if data_path.exists():
|
||||
train, valid, test = load_local_dataset(data_path, tokenizer)
|
||||
train, valid, test = load_local_dataset(
|
||||
data_path, tokenizer, args.prompt_feature, args.completion_feature
|
||||
)
|
||||
else:
|
||||
print(f"Loading Hugging Face dataset {args.data}.")
|
||||
train, valid, test = load_hf_dataset(args.data, tokenizer)
|
||||
train, valid, test = load_hf_dataset(
|
||||
args.data, tokenizer, args.prompt_feature, args.completion_feature
|
||||
)
|
||||
|
||||
if args.train and len(train) == 0:
|
||||
raise ValueError(
|
||||
|
Loading…
Reference in New Issue
Block a user