mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-29 08:43:26 +08:00
Generalize prompt_feature and completion_feature for use in local datasets to facilitate compatibility with many other training dataset formats.
This commit is contained in:
parent
bf2da36fc6
commit
db9898d104
@ -247,8 +247,18 @@ Refer to the documentation for the model you are fine-tuning for more details.
|
|||||||
{"text": "This is an example for the model."}
|
{"text": "This is an example for the model."}
|
||||||
```
|
```
|
||||||
|
|
||||||
Note, the format is automatically determined by the dataset. Note also, keys in
|
Note, the format is automatically determined by the dataset.
|
||||||
each line not expected by the loader will be ignored.
|
|
||||||
|
For the completion data format, a different key can be used for the _prompt_ and for the _completion_ by specifying
|
||||||
|
the following, for example, in the YAML config:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
prompt_feature: "input"
|
||||||
|
completion_feature: "output"
|
||||||
|
```
|
||||||
|
|
||||||
|
Here, `input` is now the expected key instead of "prompt" and `output` is the expected key instead of "completion".
|
||||||
|
Note also, keys in each line not expected by the loader will be ignored.
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> Each example in the datasets must be on a single line. Do not put more than
|
> Each example in the datasets must be on a single line. Do not put more than
|
||||||
@ -270,7 +280,7 @@ Otherwise, provide a mapping of keys in the dataset to the features MLX LM
|
|||||||
expects. Use a YAML config to specify the Hugging Face dataset arguments. For
|
expects. Use a YAML config to specify the Hugging Face dataset arguments. For
|
||||||
example:
|
example:
|
||||||
|
|
||||||
```
|
```yaml
|
||||||
hf_dataset:
|
hf_dataset:
|
||||||
name: "billsum"
|
name: "billsum"
|
||||||
prompt_feature: "text"
|
prompt_feature: "text"
|
||||||
|
@ -61,6 +61,8 @@ CONFIG_DEFAULTS = {
|
|||||||
"config": None,
|
"config": None,
|
||||||
"grad_checkpoint": False,
|
"grad_checkpoint": False,
|
||||||
"lr_schedule": None,
|
"lr_schedule": None,
|
||||||
|
"prompt_feature": "prompt",
|
||||||
|
"completion_feature": "completion",
|
||||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -81,12 +81,20 @@ class CompletionsDataset:
|
|||||||
return len(self._data)
|
return len(self._data)
|
||||||
|
|
||||||
|
|
||||||
def create_dataset(data, tokenizer: PreTrainedTokenizer):
|
<<<<<<< HEAD
|
||||||
|
def create_dataset(
|
||||||
|
data,
|
||||||
|
tokenizer: PreTrainedTokenizer,
|
||||||
|
prompt_feature: Optional[str] = None,
|
||||||
|
completion_feature: Optional[str] = None,
|
||||||
|
):
|
||||||
sample = data[0]
|
sample = data[0]
|
||||||
|
prompt_feature = prompt_feature or "prompt"
|
||||||
|
completion_feature = completion_feature or "completion"
|
||||||
|
|
||||||
if "messages" in sample:
|
if "messages" in sample:
|
||||||
return ChatDataset(data, tokenizer)
|
return ChatDataset(data, tokenizer)
|
||||||
elif "prompt" in sample and "completion" in sample:
|
elif prompt_feature in sample and completion_feature in sample:
|
||||||
return CompletionsDataset(data, tokenizer)
|
return CompletionsDataset(data, tokenizer)
|
||||||
elif "text" in sample:
|
elif "text" in sample:
|
||||||
return Dataset(data, tokenizer)
|
return Dataset(data, tokenizer)
|
||||||
@ -97,20 +105,30 @@ def create_dataset(data, tokenizer: PreTrainedTokenizer):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
|
def load_local_dataset(
|
||||||
|
data_path: Path,
|
||||||
|
tokenizer: PreTrainedTokenizer,
|
||||||
|
prompt_feature: str = None,
|
||||||
|
completion_feature: str = None,
|
||||||
|
):
|
||||||
def load_subset(path):
|
def load_subset(path):
|
||||||
if not path.exists():
|
if not path.exists():
|
||||||
return []
|
return []
|
||||||
with open(path, "r") as fid:
|
with open(path, "r") as fid:
|
||||||
data = [json.loads(l) for l in fid]
|
data = [json.loads(l) for l in fid]
|
||||||
return create_dataset(data, tokenizer)
|
return create_dataset(data, tokenizer, prompt_feature, completion_feature)
|
||||||
|
|
||||||
names = ("train", "valid", "test")
|
names = ("train", "valid", "test")
|
||||||
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
||||||
return train, valid, test
|
return train, valid, test
|
||||||
|
|
||||||
|
|
||||||
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
|
def load_hf_dataset(
|
||||||
|
data_id: str,
|
||||||
|
tokenizer: PreTrainedTokenizer,
|
||||||
|
prompt_feature: str = None,
|
||||||
|
completion_feature: str = None,
|
||||||
|
):
|
||||||
from datasets import exceptions, load_dataset
|
from datasets import exceptions, load_dataset
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -119,7 +137,13 @@ def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
|
|||||||
names = ("train", "valid", "test")
|
names = ("train", "valid", "test")
|
||||||
|
|
||||||
train, valid, test = [
|
train, valid, test = [
|
||||||
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
|
(
|
||||||
|
create_dataset(
|
||||||
|
dataset[n], tokenizer, prompt_feature, completion_feature
|
||||||
|
)
|
||||||
|
if n in dataset.keys()
|
||||||
|
else []
|
||||||
|
)
|
||||||
for n in names
|
for n in names
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -176,10 +200,14 @@ def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
|||||||
else:
|
else:
|
||||||
data_path = Path(args.data)
|
data_path = Path(args.data)
|
||||||
if data_path.exists():
|
if data_path.exists():
|
||||||
train, valid, test = load_local_dataset(data_path, tokenizer)
|
train, valid, test = load_local_dataset(
|
||||||
|
data_path, tokenizer, args.prompt_feature, args.completion_feature
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
print(f"Loading Hugging Face dataset {args.data}.")
|
print(f"Loading Hugging Face dataset {args.data}.")
|
||||||
train, valid, test = load_hf_dataset(args.data, tokenizer)
|
train, valid, test = load_hf_dataset(
|
||||||
|
args.data, tokenizer, args.prompt_feature, args.completion_feature
|
||||||
|
)
|
||||||
|
|
||||||
if args.train and len(train) == 0:
|
if args.train and len(train) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
Loading…
Reference in New Issue
Block a user