LoRA: split small functions

This commit is contained in:
madroid
2024-09-22 01:49:12 +08:00
parent aed1a0fcac
commit dcad8339e1

View File

@@ -73,17 +73,14 @@ class CompletionsDataset(Dataset):
return text
def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
# Return empty dataset for non-existent paths
if not path.exists():
return []
with open(path, "r") as fid:
data = [json.loads(l) for l in fid]
if "messages" in data[0]:
def create_dataset(data, tokenizer: PreTrainedTokenizer = None):
sample = data[0]
if "messages" in sample:
return ChatDataset(data, tokenizer)
elif "prompt" in data[0] and "completion" in data[0]:
elif "prompt" in sample and "completion" in sample:
return CompletionsDataset(data, tokenizer)
elif "text" in data[0]:
elif "text" in sample:
return Dataset(data)
else:
raise ValueError(
@@ -92,31 +89,31 @@ def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
)
def load_local_data(path: Path, tokenizer: PreTrainedTokenizer):
if not path.exists():
return []
with open(path, "r") as fid:
data = [json.loads(l) for l in fid]
return create_dataset(data, tokenizer)
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
names = ("train", "valid", "test")
train, valid, test = [
load_local_data(data_path / f"{n}.jsonl", tokenizer) for n in names
]
return train, valid, test
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
import datasets
datasets = datasets.load_dataset(data_id)
def create(data):
sample = data[0]
if "messages" in sample:
return ChatDataset(data, tokenizer)
elif "prompt" in sample and "completion" in sample:
return CompletionsDataset(data, tokenizer)
elif "text" in sample:
return Dataset(data)
else:
raise ValueError(
"Unsupported data format, check the supported formats here:\n"
"https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md#data."
)
names = ("train", "valid", "test")
train, valid, test = [
create(datasets[n], tokenizer) for n in names
]
train, valid, test = [create_dataset(datasets[n], tokenizer) for n in names]
return train, valid, test
@@ -137,9 +134,7 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
**hf_args.get("config", {}),
)
if prompt_feature and completion_feature:
return CompletionsDataset(
ds, tokenizer, prompt_feature, completion_feature
)
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
elif text_feature:
return Dataset(train_ds, text_key=text_feature)
else:
@@ -169,11 +164,9 @@ def load_dataset(args, tokenizer: PreTrainedTokenizer):
else:
data_path = Path(args.data)
if data_path.exists():
names = ("train", "valid", "test")
train, valid, test = [
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
]
train, valid, test = load_local_dataset(args.data, tokenizer)
else:
print(f"Loading Hugging Face dataset {args.data}.")
train, valid, test = load_hf_dataset(args.data, tokenizer)
if args.train and len(train) == 0: