mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-29 04:31:13 +08:00
Merge branch 'ml-explore:main' into adding-orpo-training
This commit is contained in:
commit
de147187c1
@ -1,3 +1,3 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
__version__ = "0.21.0"
|
||||
__version__ = "0.21.5"
|
||||
|
@ -208,8 +208,14 @@ def train_model(
|
||||
training_callback: TrainingCallback = None,
|
||||
):
|
||||
model.freeze()
|
||||
if args.num_layers > len(model.layers):
|
||||
raise ValueError(
|
||||
f"Requested to train {args.num_layers} layers "
|
||||
f"but the model only has {len(model.layers)} layers."
|
||||
)
|
||||
|
||||
if args.fine_tune_type == "full":
|
||||
for l in model.layers[-min(args.num_layers, 0) :]:
|
||||
for l in model.layers[-max(args.num_layers, 0) :]:
|
||||
l.unfreeze()
|
||||
elif args.fine_tune_type in ["lora", "dora"]:
|
||||
# Convert linear layers to lora/dora layers and unfreeze in the process
|
||||
|
@ -52,11 +52,6 @@ def linear_to_lora_layers(
|
||||
use_dora (bool): If True, uses DoRA instead of LoRA.
|
||||
Default: ``False``
|
||||
"""
|
||||
if num_layers > len(model.layers):
|
||||
raise ValueError(
|
||||
f"Requested {num_layers} LoRA layers "
|
||||
f"but the model only has {len(model.layers)} layers."
|
||||
)
|
||||
|
||||
def to_lora(layer):
|
||||
if isinstance(layer, (nn.Linear, nn.QuantizedLinear)):
|
||||
@ -154,7 +149,7 @@ def linear_to_lora_layers(
|
||||
else:
|
||||
raise ValueError(f"Lora does not support {model.model_type}")
|
||||
|
||||
for l in model.layers[-min(num_layers, 0) :]:
|
||||
for l in model.layers[-max(num_layers, 0) :]:
|
||||
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in keys]
|
||||
if lora_layers:
|
||||
l.update_modules(tree_unflatten(lora_layers))
|
||||
|
@ -409,8 +409,7 @@ def speculative_generate_step(
|
||||
for processor in logits_processors:
|
||||
logits = processor(tokens, logits)
|
||||
|
||||
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
||||
logprobs = logprobs.squeeze(0)
|
||||
logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True)
|
||||
y = sampler(logprobs)
|
||||
return y, logprobs
|
||||
|
||||
@ -429,16 +428,14 @@ def speculative_generate_step(
|
||||
prev_tokens = (
|
||||
mx.concat([prev_tokens, y]) if prev_tokens is not None else y
|
||||
)
|
||||
y, logprobs = _process_and_sample(
|
||||
prev_tokens, logits[:, i : i + 1, :]
|
||||
)
|
||||
y, logprobs = _process_and_sample(prev_tokens, logits[:, i, :])
|
||||
out_y.append(y)
|
||||
out_logprobs.append(logprobs)
|
||||
return mx.concatenate(out_y, axis=0), mx.concatenate(
|
||||
out_logprobs, axis=0
|
||||
)
|
||||
else:
|
||||
return _process_and_sample(None, logits)
|
||||
return _process_and_sample(None, logits.squeeze(0))
|
||||
|
||||
def _prefill(model, cache, y):
|
||||
while y.size > prefill_step_size:
|
||||
@ -476,13 +473,9 @@ def speculative_generate_step(
|
||||
num_draft = min(max_tokens - ntoks, num_draft_tokens)
|
||||
draft_tokens = _draft_generate(draft_y, num_draft)
|
||||
if prev_tokens is not None:
|
||||
prev_tokens = prev_tokens[
|
||||
: prev_tokens.size - draft_y.size - num_draft + 1
|
||||
]
|
||||
prev_tokens = prev_tokens[: prev_tokens.size - y.size - num_draft + 1]
|
||||
y = mx.concatenate([y, draft_tokens])
|
||||
|
||||
tokens, logprobs = _step(model, model_cache, y, num_draft + 1)
|
||||
|
||||
mx.eval(tokens, draft_tokens)
|
||||
draft_tokens = draft_tokens.tolist()
|
||||
tokens = tokens.tolist()
|
||||
@ -514,8 +507,8 @@ def speculative_generate_step(
|
||||
[mx.array(draft_tokens[-1:], mx.uint32), draft_y]
|
||||
)
|
||||
|
||||
if prev_tokens is not None and n < num_draft:
|
||||
prev_tokens = prev_tokens[: -(num_draft - n)]
|
||||
if prev_tokens is not None:
|
||||
prev_tokens = prev_tokens[: -max(num_draft - n, 1)]
|
||||
_rewind_cache(num_draft, n)
|
||||
finally:
|
||||
_rewind_cache(num_draft, n)
|
||||
|
Loading…
Reference in New Issue
Block a user