mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
removing dpo and fixing some stuff for orpo
This commit is contained in:
@@ -14,128 +14,48 @@ from .trainer import TrainingArgs, grad_checkpoint, TrainingCallback
|
||||
class ORPOTrainingArgs(TrainingArgs):
|
||||
beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "Temperature parameter for DPO training."}
|
||||
)
|
||||
reward_scaling: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "Scaling factor for offline rewards."}
|
||||
metadata={"help": "Temperature parameter for ORPO training."}
|
||||
)
|
||||
|
||||
|
||||
def orpo_loss(
|
||||
model,
|
||||
chosen: mx.array,
|
||||
rejected: mx.array,
|
||||
chosen_masks: mx.array,
|
||||
rejected_masks: mx.array,
|
||||
chosen_rewards: mx.array,
|
||||
rejected_rewards: mx.array,
|
||||
beta: float = 0.1,
|
||||
reward_scaling: float = 1.0,
|
||||
):
|
||||
"""
|
||||
Calculate ORPO loss using pre-computed rewards that incorporate preference scores.
|
||||
Args:
|
||||
model: Policy model
|
||||
chosen: Chosen sequence tokens
|
||||
rejected: Rejected sequence tokens
|
||||
chosen_masks: Attention masks for chosen sequences
|
||||
rejected_masks: Attention masks for rejected sequences
|
||||
chosen_rewards: Rewards for chosen sequences (derived from preference scores)
|
||||
rejected_rewards: Rewards for rejected sequences (derived from preference scores)
|
||||
beta: Temperature parameter
|
||||
reward_scaling: Scaling factor for rewards
|
||||
Returns:
|
||||
Loss value, rewards, and number of tokens.
|
||||
"""
|
||||
def make_predictions(model, x, mask):
|
||||
inputs = x[:, :-1]
|
||||
targets = x[:, 1:]
|
||||
|
||||
logits = model(inputs)
|
||||
logits = logits.astype(mx.float32)
|
||||
|
||||
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
|
||||
def orpo_loss(model, chosen, rejected, chosen_masks, rejected_masks, chosen_rewards, rejected_rewards, beta=0.1):
|
||||
def get_logps(model, x, mask):
|
||||
inputs = x[:, :-1]
|
||||
targets = x[:, 1:]
|
||||
logits = model(inputs)
|
||||
logp = -nn.losses.cross_entropy(logits, targets, reduction='none')
|
||||
seq_lengths = mask[:, :-1].sum(-1)
|
||||
logp_sum = (logp * mask[:, :-1]).sum(-1) / seq_lengths
|
||||
logits_mean = (logits * mask[:, :-1, None]).sum() / mask[:, :-1].sum()
|
||||
return logp_sum, logits_mean
|
||||
|
||||
# Calculate log probabilities for policy model
|
||||
policy_chosen_scores = make_predictions(model, chosen, chosen_masks)
|
||||
policy_rejected_scores = make_predictions(model, rejected, rejected_masks)
|
||||
|
||||
# Scale the pre-computed rewards
|
||||
chosen_rewards = chosen_rewards * reward_scaling
|
||||
rejected_rewards = rejected_rewards * reward_scaling
|
||||
|
||||
# Calculate reward difference
|
||||
reward_diff = chosen_rewards - rejected_rewards
|
||||
|
||||
# Calculate ORPO loss using logistic function
|
||||
policy_diff = policy_chosen_scores.sum(-1) - policy_rejected_scores.sum(-1)
|
||||
loss = -nn.log_sigmoid(beta * (policy_diff * reward_diff))
|
||||
|
||||
loss = mx.mean(loss)
|
||||
|
||||
# Calculate number of tokens for logging
|
||||
num_tokens = (chosen_masks.sum() + rejected_masks.sum())
|
||||
|
||||
# Calculate rewards for logging
|
||||
avg_chosen_reward = mx.mean(chosen_rewards)
|
||||
avg_rejected_reward = mx.mean(rejected_rewards)
|
||||
reward = mx.stack([avg_chosen_reward, avg_rejected_reward])
|
||||
|
||||
return loss, reward, num_tokens
|
||||
|
||||
|
||||
def evaluate_orpo(
|
||||
model,
|
||||
dataset,
|
||||
tokenizer,
|
||||
batch_size,
|
||||
num_batches,
|
||||
beta: float,
|
||||
reward_scaling: float = 1.0,
|
||||
max_seq_length=2048,
|
||||
):
|
||||
"""
|
||||
Evaluation function for ORPO.
|
||||
"""
|
||||
all_losses = 0
|
||||
all_rewards = mx.zeros((2,))
|
||||
ntokens = 0
|
||||
|
||||
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
|
||||
|
||||
for _, batch in zip(
|
||||
index_iterator,
|
||||
iterate_orpo_batches(
|
||||
dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=batch_size,
|
||||
max_seq_length=max_seq_length,
|
||||
),
|
||||
):
|
||||
chosen, rejected, chosen_masks, rejected_masks, chosen_rewards, rejected_rewards = batch
|
||||
loss, reward, toks = orpo_loss(
|
||||
model=model,
|
||||
chosen=chosen,
|
||||
rejected=rejected,
|
||||
chosen_masks=chosen_masks,
|
||||
rejected_masks=rejected_masks,
|
||||
chosen_rewards=chosen_rewards,
|
||||
rejected_rewards=rejected_rewards,
|
||||
beta=beta,
|
||||
reward_scaling=reward_scaling,
|
||||
)
|
||||
|
||||
all_losses += loss * toks
|
||||
all_rewards += reward
|
||||
ntokens += toks
|
||||
mx.eval(all_losses, all_rewards, ntokens)
|
||||
|
||||
all_losses = mx.distributed.all_sum(all_losses)
|
||||
all_rewards = mx.distributed.all_sum(all_rewards)
|
||||
ntokens = mx.distributed.all_sum(ntokens)
|
||||
|
||||
return (all_losses / ntokens).item(), all_rewards.tolist()
|
||||
policy_chosen_logps, chosen_logits_mean = get_logps(model, chosen, chosen_masks)
|
||||
policy_rejected_logps, rejected_logits_mean = get_logps(model, rejected, rejected_masks)
|
||||
|
||||
log_odds = (policy_chosen_logps - policy_rejected_logps) - (
|
||||
mx.log1p(-mx.exp(policy_chosen_logps)) - mx.log1p(-mx.exp(policy_rejected_logps))
|
||||
)
|
||||
|
||||
ratio = nn.log_sigmoid(log_odds)
|
||||
loss = -beta * ratio
|
||||
|
||||
accuracies = (log_odds > 0).astype(mx.float32)
|
||||
margins = mx.mean(ratio)
|
||||
metrics = {
|
||||
'accuracies': mx.mean(accuracies),
|
||||
'margins': margins,
|
||||
'policy_rejected_logps': mx.mean(policy_rejected_logps),
|
||||
'policy_chosen_logps': mx.mean(policy_chosen_logps),
|
||||
'rejected_logits_mean': mx.mean(rejected_logits_mean),
|
||||
'chosen_logits_mean': mx.mean(chosen_logits_mean)
|
||||
}
|
||||
|
||||
chosen_reward = beta * policy_chosen_logps
|
||||
rejected_reward = beta * policy_rejected_logps
|
||||
reward = mx.stack([mx.mean(chosen_reward), mx.mean(rejected_reward)])
|
||||
num_tokens = chosen_masks.sum() + rejected_masks.sum()
|
||||
|
||||
return mx.mean(loss), reward, num_tokens, metrics
|
||||
|
||||
|
||||
def iterate_orpo_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
|
||||
@@ -188,10 +108,6 @@ def iterate_orpo_batches(dataset, tokenizer, batch_size, max_seq_length, train=F
|
||||
|
||||
# Get preference scores and convert to rewards
|
||||
preference_scores = np.array([x.get('preference_score', 1.0) for x in batch], np.float32)
|
||||
# Convert preference scores to chosen/rejected rewards
|
||||
# When preference_score is 1.0, chosen_reward=1.0, rejected_reward=0.0
|
||||
# When preference_score is 0.0, chosen_reward=0.0, rejected_reward=1.0
|
||||
# When preference_score is 0.5, both rewards are 0.5
|
||||
chosen_rewards = preference_scores
|
||||
rejected_rewards = 1.0 - preference_scores
|
||||
|
||||
@@ -218,6 +134,56 @@ def iterate_orpo_batches(dataset, tokenizer, batch_size, max_seq_length, train=F
|
||||
break
|
||||
|
||||
|
||||
def evaluate_orpo(model, dataset, tokenizer, batch_size, num_batches, beta: float, max_seq_length=2048):
|
||||
all_losses = 0
|
||||
all_rewards = mx.zeros((2,))
|
||||
all_metrics = None
|
||||
ntokens = 0
|
||||
|
||||
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
|
||||
for _, batch in zip(
|
||||
index_iterator,
|
||||
iterate_orpo_batches(
|
||||
dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=batch_size,
|
||||
max_seq_length=max_seq_length,
|
||||
),
|
||||
):
|
||||
chosen, rejected, chosen_masks, rejected_masks, chosen_rewards, rejected_rewards = batch
|
||||
loss, reward, toks, metrics = orpo_loss(
|
||||
model=model,
|
||||
chosen=chosen,
|
||||
rejected=rejected,
|
||||
chosen_masks=chosen_masks,
|
||||
rejected_masks=rejected_masks,
|
||||
chosen_rewards=chosen_rewards,
|
||||
rejected_rewards=rejected_rewards,
|
||||
beta=beta
|
||||
)
|
||||
all_losses += loss * toks
|
||||
all_rewards += reward * toks
|
||||
ntokens += toks
|
||||
|
||||
if all_metrics is None:
|
||||
all_metrics = {k: v * toks for k, v in metrics.items()}
|
||||
else:
|
||||
for k, v in metrics.items():
|
||||
all_metrics[k] += v * toks
|
||||
|
||||
mx.eval(all_losses, all_rewards, ntokens)
|
||||
all_losses = mx.distributed.all_sum(all_losses)
|
||||
all_rewards = mx.distributed.all_sum(all_rewards)
|
||||
ntokens = mx.distributed.all_sum(ntokens)
|
||||
all_metrics = {k: mx.distributed.all_sum(v) for k, v in all_metrics.items()}
|
||||
|
||||
avg_metrics = {k: (v / ntokens).item() for k, v in all_metrics.items()}
|
||||
avg_rewards = (all_rewards / ntokens).tolist()
|
||||
avg_loss = (all_losses / ntokens).item()
|
||||
|
||||
return avg_loss, avg_rewards, ntokens, avg_metrics
|
||||
|
||||
|
||||
def train_orpo(
|
||||
model,
|
||||
tokenizer,
|
||||
@@ -227,9 +193,6 @@ def train_orpo(
|
||||
args: ORPOTrainingArgs = ORPOTrainingArgs(),
|
||||
training_callback: TrainingCallback = None,
|
||||
):
|
||||
"""
|
||||
Training function for ORPO.
|
||||
"""
|
||||
print(f"Starting ORPO training..., iters: {args.iters}")
|
||||
world = mx.distributed.init()
|
||||
world_size = world.size()
|
||||
@@ -246,7 +209,7 @@ def train_orpo(
|
||||
def step(batch):
|
||||
chosen, rejected, chosen_masks, rejected_masks, chosen_rewards, rejected_rewards = batch
|
||||
|
||||
(loss, reward, toks), grad = loss_value_and_grad(
|
||||
(loss, reward, toks, metrics), grad = loss_value_and_grad(
|
||||
model,
|
||||
chosen,
|
||||
rejected,
|
||||
@@ -259,7 +222,7 @@ def train_orpo(
|
||||
grad = average_gradients(grad)
|
||||
optimizer.update(model, grad)
|
||||
|
||||
return loss, reward, toks
|
||||
return loss, reward, toks, metrics
|
||||
|
||||
def loss_wrapper(model, chosen, rejected, chosen_masks, rejected_masks,
|
||||
chosen_rewards, rejected_rewards):
|
||||
@@ -271,8 +234,7 @@ def train_orpo(
|
||||
rejected_masks=rejected_masks,
|
||||
chosen_rewards=chosen_rewards,
|
||||
rejected_rewards=rejected_rewards,
|
||||
beta=args.beta,
|
||||
reward_scaling=args.reward_scaling
|
||||
beta=args.beta
|
||||
)
|
||||
|
||||
loss_value_and_grad = nn.value_and_grad(model, loss_wrapper)
|
||||
@@ -283,11 +245,19 @@ def train_orpo(
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
trained_tokens = 0
|
||||
accumulated_metrics = {
|
||||
'accuracies': 0,
|
||||
'margins': 0,
|
||||
'policy_rejected_logps': 0,
|
||||
'policy_chosen_logps': 0,
|
||||
'rejected_logits_mean': 0,
|
||||
'chosen_logits_mean': 0
|
||||
}
|
||||
|
||||
start = time.perf_counter()
|
||||
for it, batch in zip(
|
||||
range(1, args.iters + 1),
|
||||
iterate_orpo_batches( # reuse DPO batch iterator
|
||||
iterate_orpo_batches(
|
||||
dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=args.batch_size,
|
||||
@@ -295,18 +265,16 @@ def train_orpo(
|
||||
train=True,
|
||||
),
|
||||
):
|
||||
# Evaluate if needed
|
||||
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
val_loss, val_rewards = evaluate_orpo(
|
||||
val_loss, val_rewards, val_ntokens, val_metrics = evaluate_orpo(
|
||||
model=model,
|
||||
dataset=val_dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=args.batch_size,
|
||||
num_batches=args.val_batches,
|
||||
max_seq_length=args.max_seq_length,
|
||||
beta=args.beta,
|
||||
reward_scaling=args.reward_scaling,
|
||||
beta=args.beta
|
||||
)
|
||||
val_time = time.perf_counter() - stop
|
||||
if rank == 0:
|
||||
@@ -315,6 +283,8 @@ def train_orpo(
|
||||
f"Val loss {val_loss:.8f}, "
|
||||
f"Val chosen reward {val_rewards[0]:.3f}, "
|
||||
f"Val rejected reward {val_rewards[1]:.3f}, "
|
||||
f"Val accuracy {val_metrics['accuracies']:.3f}, "
|
||||
f"Val margin {val_metrics['margins']:.3f}, "
|
||||
f"Val took {val_time:.3f}s",
|
||||
flush=True,
|
||||
)
|
||||
@@ -325,25 +295,28 @@ def train_orpo(
|
||||
"val_loss": val_loss,
|
||||
"val_chosen_reward": val_rewards[0],
|
||||
"val_rejected_reward": val_rewards[1],
|
||||
**{f"val_{k}": v for k, v in val_metrics.items()},
|
||||
"val_time": val_time,
|
||||
})
|
||||
|
||||
start = time.perf_counter()
|
||||
|
||||
# Training step
|
||||
loss, reward, toks = step(batch)
|
||||
loss, reward, toks, metrics = step(batch)
|
||||
losses += loss
|
||||
rewards += reward
|
||||
n_tokens += toks
|
||||
steps += 1
|
||||
for k, v in metrics.items():
|
||||
accumulated_metrics[k] += v
|
||||
mx.eval(state, losses, rewards, n_tokens)
|
||||
|
||||
# Report training metrics if needed
|
||||
if it % args.steps_per_report == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
|
||||
train_loss = mx.distributed.all_sum(losses).item() / (steps * world_size)
|
||||
train_rewards = [r / (steps * world_size) for r in mx.distributed.all_sum(rewards).tolist()]
|
||||
avg_metrics = {k: v / (steps * world_size) for k, v in accumulated_metrics.items()}
|
||||
n_tokens = mx.distributed.all_sum(n_tokens).item()
|
||||
learning_rate = optimizer.learning_rate.item()
|
||||
it_sec = args.steps_per_report / (stop - start)
|
||||
@@ -356,10 +329,11 @@ def train_orpo(
|
||||
f"Iter {it}: Train loss {train_loss:.8f}, "
|
||||
f"Chosen reward {train_rewards[0]:.3f}, "
|
||||
f"Rejected reward {train_rewards[1]:.3f}, "
|
||||
f"Accuracy {avg_metrics['accuracies']:.3f}, "
|
||||
f"Margin {avg_metrics['margins']:.3f}, "
|
||||
f"Learning Rate {learning_rate:.3e}, "
|
||||
f"It/sec {it_sec:.3f}, "
|
||||
f"Tokens/sec {tokens_sec:.3f}, "
|
||||
f"Trained Tokens {trained_tokens}, "
|
||||
f"Peak mem {peak_mem:.3f} GB",
|
||||
flush=True,
|
||||
)
|
||||
@@ -370,6 +344,7 @@ def train_orpo(
|
||||
"train_loss": train_loss,
|
||||
"train_chosen_reward": train_rewards[0],
|
||||
"train_rejected_reward": train_rewards[1],
|
||||
**{f"train_{k}": v for k, v in avg_metrics.items()},
|
||||
"learning_rate": learning_rate,
|
||||
"iterations_per_second": it_sec,
|
||||
"tokens_per_second": tokens_sec,
|
||||
@@ -381,9 +356,9 @@ def train_orpo(
|
||||
rewards = mx.zeros((2,))
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
accumulated_metrics = {k: 0 for k in accumulated_metrics}
|
||||
start = time.perf_counter()
|
||||
|
||||
# Save model weights if needed
|
||||
if it % args.steps_per_save == 0:
|
||||
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
|
||||
mx.save_safetensors(str(args.adapter_file), adapter_weights)
|
||||
@@ -396,7 +371,6 @@ def train_orpo(
|
||||
f"{args.adapter_file} and {checkpoint}."
|
||||
)
|
||||
|
||||
# Save final weights
|
||||
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
|
||||
mx.save_safetensors(str(args.adapter_file), adapter_weights)
|
||||
print(f"Saved final weights to {args.adapter_file}.")
|
||||
Reference in New Issue
Block a user