mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
adding custom system message integration in dataset, more opimizations (generates now faster, while same RAM usage), fix for the identical generatrions, seperated the reward functions into a seperate file.
This commit is contained in:
82
llms/mlx_lm/tuner/grpo_reward_functions.py
Normal file
82
llms/mlx_lm/tuner/grpo_reward_functions.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from typing import List, Optional, Callable
|
||||
import re
|
||||
|
||||
|
||||
RewardFunctions = Callable[[List[str], List[str], List[str]], List[float]]
|
||||
|
||||
|
||||
def r1_extract_xml_answer(text: str) -> str:
|
||||
try:
|
||||
answer = text.split("<answer>")[-1]
|
||||
answer = answer.split("</answer>")[0]
|
||||
return answer.strip()
|
||||
except:
|
||||
print("r1_extract_xml_answer returned empty string")
|
||||
return ""
|
||||
|
||||
def r1_int_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
|
||||
if not completions:
|
||||
return [0.0] * len(prompts)
|
||||
extracted_responses = [r1_extract_xml_answer(r) for r in completions]
|
||||
return [0.5 if r and r.isdigit() else 0.0 for r in extracted_responses]
|
||||
|
||||
def r1_accuracy_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
|
||||
if not completions or not answer:
|
||||
return [0.0] * len(prompts)
|
||||
extracted_responses = [r1_extract_xml_answer(r) for r in completions]
|
||||
return [2.0 if r and a and r == a else 0.0 for r, a in zip(extracted_responses, answer)]
|
||||
|
||||
def r1_soft_format_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
|
||||
if not completions:
|
||||
return [0.0] * len(prompts)
|
||||
|
||||
scores = []
|
||||
for completion in completions:
|
||||
if not completion:
|
||||
scores.append(0.0)
|
||||
continue
|
||||
|
||||
reason_start = completion.find("<think>")
|
||||
reason_end = completion.find("</think>")
|
||||
answer_start = completion.find("<answer>")
|
||||
answer_end = completion.find("</answer>")
|
||||
|
||||
if (reason_start != -1 and reason_end != -1 and
|
||||
answer_start != -1 and answer_end != -1 and
|
||||
reason_start < reason_end < answer_start < answer_end):
|
||||
reason_content = completion[reason_start+13:reason_end].strip()
|
||||
answer_content = completion[answer_start+8:answer_end].strip()
|
||||
if reason_content and answer_content:
|
||||
scores.append(0.5)
|
||||
continue
|
||||
scores.append(0.0)
|
||||
return scores
|
||||
|
||||
def r1_strict_format_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
|
||||
if not completions:
|
||||
return [0.0] * len(prompts)
|
||||
pattern = r"<think>\n.*?\n</think>\n<answer>*?</answer>"
|
||||
matches = [bool(re.search(pattern, r)) if r else False for r in completions]
|
||||
return [0.5 if match else 0.0 for match in matches]
|
||||
|
||||
def r1_count_xml(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
|
||||
if not completions:
|
||||
return [0.0] * len(prompts)
|
||||
scores = []
|
||||
for text in completions:
|
||||
if not text:
|
||||
scores.append(0.0)
|
||||
continue
|
||||
count = 0.0
|
||||
if text.count("<think>\n") == 1:
|
||||
count += 0.125
|
||||
if text.count("</think>") == 1:
|
||||
count += 0.125
|
||||
if text.count("<answer>") == 1:
|
||||
count += 0.125
|
||||
if text.count("</answer>") == 1:
|
||||
count += 0.125
|
||||
end_text = text.split("</answer>")[-1]
|
||||
count -= len(end_text) * 0.001 if len(end_text) > 0 else 0
|
||||
scores.append(max(0.0, count))
|
||||
return scores
|
||||
Reference in New Issue
Block a user