diff --git a/llms/mlx_lm/utils.py b/llms/mlx_lm/utils.py index 8893b570..d4afd428 100644 --- a/llms/mlx_lm/utils.py +++ b/llms/mlx_lm/utils.py @@ -61,8 +61,8 @@ def wired_limit(model: nn.Module, streams: Optional[List[mx.Stream]] = None): model_mb = model_bytes // 2**20 max_rec_mb = max_rec_size // 2**20 print( - "[WARNING] Generating with a model that requires {model_mb} MB " - "which is close to the maximum recommended size of {max_rec_mb} " + f"[WARNING] Generating with a model that requires {model_mb} MB " + f"which is close to the maximum recommended size of {max_rec_mb} " "MB. This can be slow. See the documentation for possible work-arounds: " "https://github.com/ml-explore/mlx-examples/tree/main/llms#large-models" ) diff --git a/stable_diffusion/image2image.py b/stable_diffusion/image2image.py index e470aa81..4444c488 100644 --- a/stable_diffusion/image2image.py +++ b/stable_diffusion/image2image.py @@ -30,6 +30,7 @@ if __name__ == "__main__": parser.add_argument("--preload-models", action="store_true") parser.add_argument("--output", default="out.png") parser.add_argument("--verbose", "-v", action="store_true") + parser.add_argument("--seed", type=int) args = parser.parse_args() # Load the models @@ -94,6 +95,7 @@ if __name__ == "__main__": cfg_weight=args.cfg, num_steps=args.steps, negative_text=args.negative_prompt, + seed=args.seed, ) for x_t in tqdm(latents, total=int(args.steps * args.strength)): mx.eval(x_t)