LoRA on all linear transformer block layers (#546)

* Add --lora-all-linear option to apply LoRa to all linear transfer block layers

* Moved to YAML config and added specification of rank & alpha

* nits in conifg, more tests

* nit

* run tests for prs

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Chime Ogbuji
2024-03-12 10:37:40 -04:00
committed by GitHub
parent fe5edee360
commit e56d9015ef
8 changed files with 163 additions and 40 deletions

View File

@@ -1,3 +1,5 @@
# Copyright © 2024 Apple Inc.
import math
import mlx.core as mx
@@ -9,8 +11,8 @@ class LoRALinear(nn.Module):
def from_linear(
linear: nn.Linear,
r: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.0,
alpha: float = 16,
dropout: float = 0.0,
scale: float = 10.0,
):
# TODO remove when input_dims and output_dims are attributes
@@ -22,8 +24,8 @@ class LoRALinear(nn.Module):
input_dims=input_dims,
output_dims=output_dims,
r=r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
alpha=alpha,
dropout=dropout,
scale=scale,
)
lora_lin.linear = linear
@@ -70,8 +72,8 @@ class LoRALinear(nn.Module):
input_dims: int,
output_dims: int,
r: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.0,
alpha: float = 16,
dropout: float = 0.0,
scale: float = 10.0,
bias: bool = False,
):
@@ -80,10 +82,10 @@ class LoRALinear(nn.Module):
# Regular linear layer weights
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
self.lora_dropout = nn.Dropout(p=lora_dropout)
self.dropout = nn.Dropout(p=dropout)
# Scale for low-rank update
self.scale = scale * (lora_alpha / r)
self.scale = scale * (alpha / r)
# Low rank lora weights
scale = 1 / math.sqrt(input_dims)
@@ -99,5 +101,5 @@ class LoRALinear(nn.Module):
if isinstance(self.linear, nn.QuantizedLinear):
dtype = self.linear.scales.dtype
y = self.linear(x.astype(dtype))
z = (self.lora_dropout(x) @ self.lora_a) @ self.lora_b
z = (self.dropout(x) @ self.lora_a) @ self.lora_b
return y + self.scale * z

View File

@@ -1,3 +1,5 @@
# Copyright © 2024 Apple Inc.
import time
from dataclasses import dataclass, field
from pathlib import Path

View File

@@ -1,4 +1,5 @@
import os
from typing import Dict
import mlx.core as mx
import mlx.nn as nn
@@ -7,7 +8,11 @@ from mlx.utils import tree_unflatten
from .lora import LoRALinear
def linear_to_lora_layers(model: nn.Module, num_lora_layers: int):
def linear_to_lora_layers(
model: nn.Module,
num_lora_layers: int,
config: Dict,
):
"""
Convert some of the models linear layers to lora layers.
@@ -15,16 +20,28 @@ def linear_to_lora_layers(model: nn.Module, num_lora_layers: int):
model (nn.Module): The neural network model.
num_lora_layers (int): The number of blocks to convert to lora layers
starting from the last layer.
config (dict): More configuration parameters for LoRA, including the
rank, alpha, scale, and optional layer keys.
"""
def check_lora_layers(num_model):
if num_lora_layers > num_model:
raise ValueError(
f"Requested {num_lora_layers} LoRA layers "
f"but the model only has {num_model} layers."
)
num_layers = len(model.layers)
if num_lora_layers > num_layers:
raise ValueError(
f"Requested {num_lora_layers} LoRA layers "
f"but the model only has {num_layers} layers."
)
if model.model_type in [
to_lora = lambda lin: LoRALinear.from_linear(
lin, r=config["rank"], alpha=config["alpha"], scale=config["scale"]
)
# If the lora_parameters are set, we assume the keys
# are correct for the given model
keys = config.get("keys", None)
if keys is not None:
keys = set(keys)
elif model.model_type in [
"mistral",
"llama",
"phi",
@@ -34,32 +51,21 @@ def linear_to_lora_layers(model: nn.Module, num_lora_layers: int):
"gemma",
"starcoder2",
]:
check_lora_layers(len(model.model.layers))
for l in model.model.layers[len(model.model.layers) - num_lora_layers :]:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
if hasattr(l, "block_sparse_moe"):
l.block_sparse_moe.gate = LoRALinear.from_linear(
l.block_sparse_moe.gate
)
keys = set(["self_attn.q_proj", "self_attn.v_proj"])
if model.model_type == "mixtral":
keys.add(["block_sparse_moe.gate"])
elif model.model_type == "olmo":
check_lora_layers(len(model.model.transformer.blocks))
for l in model.model.transformer.blocks[
len(model.model.transformer.blocks) - num_lora_layers :
]:
l.att_proj = LoRALinear.from_linear(l.att_proj)
keys = set(["att_proj"])
elif model.model_type == "phi-msft":
check_lora_layers(len(model.transformer.h))
for l in model.transformer.h[len(model.transformer.h) - num_lora_layers :]:
l.mixer.Wqkv = LoRALinear.from_linear(l.mixer.Wqkv)
l.moe.gate = LoRALinear.from_linear(l.moe.gate)
keys = set(["mixer.Wqkv", "moe.gate"])
else:
raise ValueError(f"Lora does not support {model.model_type}")
for l in model.layers[num_layers - num_lora_layers :]:
modules = l.named_modules()
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in keys]
l.update_modules(tree_unflatten(lora_layers))
def apply_lora_layers(model: nn.Module, adapter_file: str) -> nn.Module:
"""