Distributed support cifar (#1301)

This commit is contained in:
Angelos Katharopoulos 2025-03-05 13:33:15 -08:00 committed by GitHub
parent f621218ff5
commit e7267d30f8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 84 additions and 32 deletions

View File

@ -48,3 +48,17 @@ Note this was run on an M1 Macbook Pro with 16GB RAM.
At the time of writing, `mlx` doesn't have built-in learning rate schedules. At the time of writing, `mlx` doesn't have built-in learning rate schedules.
We intend to update this example once these features are added. We intend to update this example once these features are added.
## Distributed training
The example also supports distributed data parallel training. You can launch a
distributed training as follows:
```shell
$ cat >hostfile.json
[
{"ssh": "host-to-ssh-to", "ips": ["ip-to-bind-to"]},
{"ssh": "host-to-ssh-to", "ips": ["ip-to-bind-to"]}
]
$ mlx.launch --verbose --hostfile hostfile.json main.py --batch 256 --epochs 5 --arch resnet20
```

View File

@ -1,3 +1,4 @@
import mlx.core as mx
import numpy as np import numpy as np
from mlx.data.datasets import load_cifar10 from mlx.data.datasets import load_cifar10
@ -12,8 +13,11 @@ def get_cifar10(batch_size, root=None):
x = x.astype("float32") / 255.0 x = x.astype("float32") / 255.0
return (x - mean) / std return (x - mean) / std
group = mx.distributed.init()
tr_iter = ( tr_iter = (
tr.shuffle() tr.shuffle()
.partition_if(group.size() > 1, group.size(), group.rank())
.to_stream() .to_stream()
.image_random_h_flip("image", prob=0.5) .image_random_h_flip("image", prob=0.5)
.pad("image", 0, 4, 4, 0.0) .pad("image", 0, 4, 4, 0.0)
@ -25,6 +29,11 @@ def get_cifar10(batch_size, root=None):
) )
test = load_cifar10(root=root, train=False) test = load_cifar10(root=root, train=False)
test_iter = test.to_stream().key_transform("image", normalize).batch(batch_size) test_iter = (
test.to_stream()
.partition_if(group.size() > 1, group.size(), group.rank())
.key_transform("image", normalize)
.batch(batch_size)
)
return tr_iter, test_iter return tr_iter, test_iter

View File

@ -23,6 +23,13 @@ parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only") parser.add_argument("--cpu", action="store_true", help="use cpu only")
def print_zero(group, *args, **kwargs):
if group.rank() != 0:
return
flush = kwargs.pop("flush", True)
print(*args, **kwargs, flush=flush)
def eval_fn(model, inp, tgt): def eval_fn(model, inp, tgt):
return mx.mean(mx.argmax(model(inp), axis=1) == tgt) return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
@ -34,9 +41,20 @@ def train_epoch(model, train_iter, optimizer, epoch):
acc = mx.mean(mx.argmax(output, axis=1) == tgt) acc = mx.mean(mx.argmax(output, axis=1) == tgt)
return loss, acc return loss, acc
losses = [] world = mx.distributed.init()
accs = [] losses = 0
samples_per_sec = [] accuracies = 0
samples_per_sec = 0
count = 0
def average_stats(stats, count):
if world.size() == 1:
return [s / count for s in stats]
with mx.stream(mx.cpu):
stats = mx.distributed.all_sum(mx.array(stats))
count = mx.distributed.all_sum(count)
return (stats / count).tolist()
state = [model.state, optimizer.state] state = [model.state, optimizer.state]
@ -44,6 +62,7 @@ def train_epoch(model, train_iter, optimizer, epoch):
def step(inp, tgt): def step(inp, tgt):
train_step_fn = nn.value_and_grad(model, train_step) train_step_fn = nn.value_and_grad(model, train_step)
(loss, acc), grads = train_step_fn(model, inp, tgt) (loss, acc), grads = train_step_fn(model, inp, tgt)
grads = nn.utils.average_gradients(grads)
optimizer.update(model, grads) optimizer.update(model, grads)
return loss, acc return loss, acc
@ -52,69 +71,79 @@ def train_epoch(model, train_iter, optimizer, epoch):
y = mx.array(batch["label"]) y = mx.array(batch["label"])
tic = time.perf_counter() tic = time.perf_counter()
loss, acc = step(x, y) loss, acc = step(x, y)
mx.eval(state) mx.eval(loss, acc, state)
toc = time.perf_counter() toc = time.perf_counter()
loss = loss.item() losses += loss.item()
acc = acc.item() accuracies += acc.item()
losses.append(loss) samples_per_sec += x.shape[0] / (toc - tic)
accs.append(acc) count += 1
throughput = x.shape[0] / (toc - tic)
samples_per_sec.append(throughput)
if batch_counter % 10 == 0: if batch_counter % 10 == 0:
print( l, a, s = average_stats(
[losses, accuracies, world.size() * samples_per_sec],
count,
)
print_zero(
world,
" | ".join( " | ".join(
( (
f"Epoch {epoch:02d} [{batch_counter:03d}]", f"Epoch {epoch:02d} [{batch_counter:03d}]",
f"Train loss {loss:.3f}", f"Train loss {l:.3f}",
f"Train acc {acc:.3f}", f"Train acc {a:.3f}",
f"Throughput: {throughput:.2f} images/second", f"Throughput: {s:.2f} images/second",
) )
) ),
) )
mean_tr_loss = mx.mean(mx.array(losses)) return average_stats([losses, accuracies, world.size() * samples_per_sec], count)
mean_tr_acc = mx.mean(mx.array(accs))
samples_per_sec = mx.mean(mx.array(samples_per_sec))
return mean_tr_loss, mean_tr_acc, samples_per_sec
def test_epoch(model, test_iter, epoch): def test_epoch(model, test_iter, epoch):
accs = [] accuracies = 0
count = 0
for batch_counter, batch in enumerate(test_iter): for batch_counter, batch in enumerate(test_iter):
x = mx.array(batch["image"]) x = mx.array(batch["image"])
y = mx.array(batch["label"]) y = mx.array(batch["label"])
acc = eval_fn(model, x, y) acc = eval_fn(model, x, y)
acc_value = acc.item() accuracies += acc.item()
accs.append(acc_value) count += 1
mean_acc = mx.mean(mx.array(accs))
return mean_acc with mx.stream(mx.cpu):
accuracies = mx.distributed.all_sum(accuracies)
count = mx.distributed.all_sum(count)
return (accuracies / count).item()
def main(args): def main(args):
mx.random.seed(args.seed) mx.random.seed(args.seed)
# Initialize the distributed group and report the nodes that showed up
world = mx.distributed.init()
if world.size() > 1:
print(f"Starting rank {world.rank()} of {world.size()}", flush=True)
model = getattr(resnet, args.arch)() model = getattr(resnet, args.arch)()
print("Number of params: {:0.04f} M".format(model.num_params() / 1e6)) print_zero(world, f"Number of params: {model.num_params() / 1e6:0.04f} M")
optimizer = optim.Adam(learning_rate=args.lr) optimizer = optim.Adam(learning_rate=args.lr)
train_data, test_data = get_cifar10(args.batch_size) train_data, test_data = get_cifar10(args.batch_size)
for epoch in range(args.epochs): for epoch in range(args.epochs):
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch) tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
print( print_zero(
world,
" | ".join( " | ".join(
( (
f"Epoch: {epoch}", f"Epoch: {epoch}",
f"avg. Train loss {tr_loss.item():.3f}", f"avg. Train loss {tr_loss:.3f}",
f"avg. Train acc {tr_acc.item():.3f}", f"avg. Train acc {tr_acc:.3f}",
f"Throughput: {throughput.item():.2f} images/sec", f"Throughput: {throughput:.2f} images/sec",
) )
) ),
) )
test_acc = test_epoch(model, test_data, epoch) test_acc = test_epoch(model, test_data, epoch)
print(f"Epoch: {epoch} | Test acc {test_acc.item():.3f}") print_zero(world, f"Epoch: {epoch} | Test acc {test_acc:.3f}")
train_data.reset() train_data.reset()
test_data.reset() test_data.reset()