Add gradient accumulation and data parallelism

This commit is contained in:
Angelos Katharopoulos
2024-10-03 18:03:45 -07:00
parent 7cffcdcaff
commit e7751e4c29

View File

@@ -7,7 +7,8 @@ import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from mlx.utils import tree_reduce, tree_unflatten
from mlx.nn.utils import average_gradients
from mlx.utils import tree_map, tree_reduce, tree_unflatten
from PIL import Image
from tqdm import tqdm
@@ -15,13 +16,14 @@ from flux import FluxPipeline
from flux.lora import LoRALinear
def linear_to_lora_layers(flux):
def linear_to_lora_layers(flux, args):
lora_layers = []
rank = args.lora_rank
for name, mod in flux.flow.named_modules():
if ".img_attn" not in name:
if ".img_attn" not in name and ".txt_attn" not in name:
continue
if ".qkv" in name or ".proj" in name:
lora_layers.append((name, LoRALinear.from_base(mod, r=32)))
lora_layers.append((name, LoRALinear.from_base(mod, r=rank)))
flux.flow.update_modules(tree_unflatten(lora_layers))
@@ -60,6 +62,15 @@ def generate_latents(flux, n_images, prompt, steps, seed=None, leave=True):
return x_t
def iterate_batches(t5_tokens, clip_tokens, x, batch_size):
while True:
indices = mx.random.randint(0, len(x), (batch_size,))
t5_i = t5_tokens[indices]
clip_i = clip_tokens[indices]
x_i = x[indices]
yield t5_i, clip_i, x_i
def generate_progress_images(iteration, flux, args):
out_dir = Path(args.output_dir)
out_dir.mkdir(parents=True, exist_ok=True)
@@ -72,7 +83,7 @@ def generate_progress_images(iteration, flux, args):
n_images,
args.progress_prompt,
args.progress_steps,
seed=42,
seed=42 + mx.distributed.init().rank(),
)
# Arrange them on a grid
@@ -82,6 +93,7 @@ def generate_progress_images(iteration, flux, args):
B, H, W, C = x.shape
x = x.reshape(n_rows, B // n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
x = x.reshape(n_rows * H, B // n_rows * W, C)
x = mx.pad(x, [(4, 4), (4, 4), (0, 0)])
x = (x * 255).astype(mx.uint8)
# Save them to disc
@@ -137,9 +149,18 @@ if __name__ == "__main__":
default=50,
help="Save the model every CHECKPOINT_EVERY steps",
)
parser.add_argument(
"--lora-rank", type=int, default=32, help="LoRA rank for finetuning"
)
parser.add_argument(
"--learning-rate", type=float, default="1e-6", help="Learning rate for training"
)
parser.add_argument(
"--grad-accumulate",
type=int,
default=1,
help="Accumulate gradients for that many iterations before applying them",
)
parser.add_argument(
"--output-dir", default="mlx_output", help="Folder to save the checkpoints in"
)
@@ -154,7 +175,7 @@ if __name__ == "__main__":
flux = FluxPipeline("flux-" + args.model)
flux.ensure_models_are_loaded()
flux.flow.freeze()
linear_to_lora_layers(flux)
linear_to_lora_layers(flux, args)
trainable_params = tree_reduce(
lambda acc, x: acc + x.size, flux.flow.trainable_parameters(), 0
@@ -165,14 +186,61 @@ if __name__ == "__main__":
state = [flux.flow.state, optimizer.state, mx.random.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(t5_tokens, clip_tokens, x, guidance):
def single_step(t5_tokens, clip_tokens, x, guidance):
loss, grads = nn.value_and_grad(flux.flow, flux.training_loss)(
t5_tokens, clip_tokens, x, guidance
)
grads = average_gradients(grads)
optimizer.update(flux.flow, grads)
return loss
@partial(mx.compile, inputs=state, outputs=state)
def compute_loss_and_grads(t5_tokens, clip_tokens, x, guidance):
return nn.value_and_grad(flux.flow, flux.training_loss)(
t5_tokens, clip_tokens, x, guidance
)
@partial(mx.compile, inputs=state, outputs=state)
def compute_loss_and_accumulate_grads(
t5_tokens, clip_tokens, x, guidance, prev_grads
):
loss, grads = nn.value_and_grad(flux.flow, flux.training_loss)(
t5_tokens, clip_tokens, x, guidance
)
grads = tree_map(lambda a, b: a + b, prev_grads, grads)
return loss, grads
@partial(mx.compile, inputs=state, outputs=state)
def grad_accumulate_and_step(t5_tokens, clip_tokens, x, guidance, prev_grads):
loss, grads = nn.value_and_grad(flux.flow, flux.training_loss)(
t5_tokens, clip_tokens, x, guidance
)
grads = tree_map(lambda a, b: a + b, prev_grads, grads)
grads = average_gradients(grads)
optimizer.update(flux.flow, grads)
return loss
def step(t5_tokens, clip_tokens, x, guidance, prev_grads, perform_step):
if prev_grads is None:
if perform_step:
return single_step(t5_tokens, clip_tokens, x, guidance), None
else:
return compute_loss_and_grads(t5_tokens, clip_tokens, x, guidance)
else:
if perform_step:
return (
grad_accumulate_and_step(
t5_tokens, clip_tokens, x, guidance, prev_grads
),
None,
)
else:
return compute_loss_and_accumulate_grads(
t5_tokens, clip_tokens, x, guidance, prev_grads
)
print("Encoding training images to latent space")
x = extract_latent_vectors(flux, args.image_folder)
t5_tokens, clip_tokens = flux.tokenize([args.prompt] * len(x))
@@ -181,14 +249,13 @@ if __name__ == "__main__":
# An initial generation to compare
generate_progress_images(0, flux, args)
grads = None
losses = []
tic = time.time()
for i in range(args.iterations):
indices = (mx.random.uniform(shape=(args.batch_size,)) * len(x)).astype(
mx.uint32
)
loss = step(t5_tokens[indices], clip_tokens[indices], x[indices], guidance)
mx.eval(loss, state)
batches = iterate_batches(t5_tokens, clip_tokens, x, args.batch_size)
for i, batch in zip(range(args.iterations), batches):
loss, grads = step(*batch, guidance, grads, (i + 1) % args.grad_accumulate == 0)
mx.eval(loss, grads, state)
losses.append(loss.item())
if (i + 1) % 10 == 0: