diff --git a/llms/mlx_lm/lora.py b/llms/mlx_lm/lora.py index 7ebfb100..fc004ae2 100644 --- a/llms/mlx_lm/lora.py +++ b/llms/mlx_lm/lora.py @@ -73,13 +73,6 @@ def build_parser(): help="The path to the local model directory or Hugging Face repo.", ) - parser.add_argument( - "--revision", - default="main", - type=str, - help="Hash value of the commit to checkout from the Hugging Face repo.", - ) - # Training args parser.add_argument( "--train", @@ -259,7 +252,7 @@ def run(args, training_callback: TrainingCallback = None): np.random.seed(args.seed) print("Loading pretrained model") - model, tokenizer = load(args.model, args.revision) + model, tokenizer = load(args.model) print("Loading datasets") train_set, valid_set, test_set = load_dataset(args, tokenizer) @@ -303,4 +296,4 @@ def main(): if __name__ == "__main__": - main() + main() \ No newline at end of file diff --git a/llms/mlx_lm/utils.py b/llms/mlx_lm/utils.py index 68d2204e..6007adb0 100644 --- a/llms/mlx_lm/utils.py +++ b/llms/mlx_lm/utils.py @@ -153,7 +153,7 @@ def compute_bits_per_weight(model): return model_bytes * 8 / model_params -def get_model_path(path_or_hf_repo: str, revision: Optional[str] = "main") -> Path: +def get_model_path(path_or_hf_repo: str, revision: Optional[str] = None) -> Path: """ Ensures the model is available locally. If the path does not exist locally, it is downloaded from the Hugging Face Hub. @@ -185,7 +185,7 @@ def get_model_path(path_or_hf_repo: str, revision: Optional[str] = "main") -> Pa ) except: raise ModelNotFoundError( - f"Model not found for path or HF repo: {path_or_hf_repo}:{revision}.\n" + f"Model not found for path or HF repo: {path_or_hf_repo}.\n" "Please make sure you specified the local path or Hugging Face" " repo id correctly.\nIf you are trying to access a private or" " gated Hugging Face repo, make sure you are authenticated:\n" @@ -710,7 +710,6 @@ def load( model_config={}, adapter_path: Optional[str] = None, lazy: bool = False, - revision: Optional[str] = "main", ) -> Tuple[nn.Module, TokenizerWrapper]: """ Load the model and tokenizer from a given path or a huggingface repository. @@ -1028,4 +1027,4 @@ def convert( save_config(config, config_path=mlx_path / "config.json") if upload_repo is not None: - upload_to_hub(mlx_path, upload_repo, hf_path) + upload_to_hub(mlx_path, upload_repo, hf_path) \ No newline at end of file