mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
add GCN implementation
This commit is contained in:
120
gcn/main.py
Normal file
120
gcn/main.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx.optimizers as optim
|
||||
from mlx.nn.losses import cross_entropy
|
||||
|
||||
from datasets import download_cora, load_data, train_val_test_mask
|
||||
from gcn import GCN
|
||||
|
||||
|
||||
def loss_fn(y_hat, y, weight_decay=0.0, parameters=None):
|
||||
l = mx.mean(nn.losses.cross_entropy(y_hat, y))
|
||||
|
||||
if weight_decay != 0.0:
|
||||
assert parameters != None, "Model parameters missing for L2 reg."
|
||||
|
||||
l2_reg = mx.zeros(
|
||||
1,
|
||||
)
|
||||
for k1, v1 in parameters.items():
|
||||
for k2, v2 in v1.items():
|
||||
l2_reg += mx.sum(v2["weight"] ** 2)
|
||||
return l + weight_decay * l2_reg.item()
|
||||
return l
|
||||
|
||||
|
||||
def eval_fn(x, y):
|
||||
return mx.mean(mx.argmax(x, axis=1) == y)
|
||||
|
||||
|
||||
def forward_fn(gcn, x, adj, y, train_mask, weight_decay):
|
||||
y_hat = gcn(x, adj)
|
||||
loss = loss_fn(y_hat[train_mask], y[train_mask], weight_decay, gcn.parameters())
|
||||
return loss, y_hat
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
# Data loading
|
||||
download_cora()
|
||||
|
||||
x, y, adj = load_data(args)
|
||||
train_mask, val_mask, test_mask = train_val_test_mask(y, args.nb_classes)
|
||||
|
||||
gcn = GCN(
|
||||
x_dim=x.shape[-1],
|
||||
h_dim=args.hidden_dim,
|
||||
out_dim=args.nb_classes,
|
||||
nb_layers=args.nb_layers,
|
||||
dropout=args.dropout,
|
||||
bias=args.bias,
|
||||
)
|
||||
mx.eval(gcn.parameters())
|
||||
|
||||
optimizer = optim.Adam(learning_rate=args.lr)
|
||||
loss_and_grad_fn = nn.value_and_grad(gcn, forward_fn)
|
||||
|
||||
best_val_loss = float("inf")
|
||||
cnt = 0
|
||||
|
||||
# Training loop
|
||||
for epoch in range(args.epochs):
|
||||
|
||||
# Loss
|
||||
(loss, y_hat), grads = loss_and_grad_fn(
|
||||
gcn, x, adj, y, train_mask, args.weight_decay
|
||||
)
|
||||
optimizer.update(gcn, grads)
|
||||
mx.eval(gcn.parameters(), optimizer.state)
|
||||
|
||||
# Validation
|
||||
val_loss = loss_fn(y_hat[val_mask], y[val_mask])
|
||||
val_acc = eval_fn(y_hat[val_mask], y[val_mask])
|
||||
|
||||
# Early stopping
|
||||
if val_loss < best_val_loss:
|
||||
best_val_loss = val_loss
|
||||
cnt = 0
|
||||
else:
|
||||
cnt += 1
|
||||
if cnt == args.patience:
|
||||
break
|
||||
|
||||
print(
|
||||
" | ".join(
|
||||
[
|
||||
f"Epoch: {epoch:3d}",
|
||||
f"Train loss: {loss.item():.3f}",
|
||||
f"Val loss: {val_loss.item():.3f}",
|
||||
f"Val acc: {val_acc.item():.2f}",
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Test
|
||||
test_y_hat = gcn(x, adj)
|
||||
test_loss = loss_fn(y_hat[test_mask], y[test_mask])
|
||||
test_acc = eval_fn(y_hat[test_mask], y[test_mask])
|
||||
|
||||
print(f"Test loss: {test_loss.item():.3f} | Test acc: {test_acc.item():.2f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--nodes_path", type=str, default="cora/cora.content")
|
||||
parser.add_argument("--edges_path", type=str, default="cora/cora.cites")
|
||||
parser.add_argument("--hidden_dim", type=int, default=20)
|
||||
parser.add_argument("--dropout", type=float, default=0.5)
|
||||
parser.add_argument("--nb_layers", type=int, default=2)
|
||||
parser.add_argument("--nb_classes", type=int, default=7)
|
||||
parser.add_argument("--bias", type=bool, default=True)
|
||||
parser.add_argument("--lr", type=float, default=0.001)
|
||||
parser.add_argument("--weight_decay", type=float, default=0.0)
|
||||
parser.add_argument("--patience", type=int, default=20)
|
||||
parser.add_argument("--epochs", type=int, default=100)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
Reference in New Issue
Block a user