This commit is contained in:
Awni Hannun 2025-02-09 19:37:11 -08:00
parent bb2c8bcf96
commit eda597bdef

View File

@ -1,5 +1,6 @@
import itertools
import json
import types
from pathlib import Path
from typing import Any, Dict, List, Optional
@ -115,22 +116,26 @@ class ConcatenatedDataset:
def create_dataset(
data,
tokenizer: PreTrainedTokenizer,
config: Dict,
config,
):
mask_prompt = getattr(config, "mask_prompt", False)
prompt_feature = getattr(config, "prompt_feature", "prompt")
text_feature = getattr(config, "text_feature", "text")
completion_feature = getattr(config, "completion_feature", "completion")
chat_feature = getattr(config, "chat_feature", "messages")
sample = data[0]
if "messages" in sample:
return ChatDataset(data, tokenizer, mask_prompt=mask_prompt)
elif prompt_feature in sample and completion_feature in sample:
if prompt_feature in sample and completion_feature in sample:
return CompletionsDataset(
data, tokenizer, prompt_feature, completion_feature, mask_prompt
)
elif "text" in sample:
elif chat_feature in sample:
return ChatDataset(
data, tokenizer, chat_key=chat_feature, mask_prompt=mask_prompt
)
elif text_feature in sample:
if mask_prompt:
raise ValueError("Prompt masking not supported for text dataset.")
return Dataset(data, tokenizer)
return Dataset(data, tokenizer, text_key=text_feature)
else:
raise ValueError(
"Unsupported data format, check the supported formats here:\n"
@ -141,7 +146,7 @@ def create_dataset(
def load_local_dataset(
data_path: Path,
tokenizer: PreTrainedTokenizer,
config: Dict,
config,
):
def load_subset(path):
if not path.exists():
@ -158,7 +163,7 @@ def load_local_dataset(
def load_hf_dataset(
data_id: str,
tokenizer: PreTrainedTokenizer,
config: Dict,
config,
):
from datasets import exceptions, load_dataset
@ -185,39 +190,13 @@ def load_hf_dataset(
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
import datasets
mask_prompt = getattr(args, "mask_prompt", False)
def create_hf_dataset(
dataset_name,
text_feature,
prompt_feature,
completion_feature,
chat_feature,
split,
config,
):
def create_hf_dataset(dataset_name, config, split, hf_config):
ds = datasets.load_dataset(
dataset_name,
split=split,
**config,
**hf_config,
)
if prompt_feature and completion_feature:
return CompletionsDataset(
ds, tokenizer, prompt_feature, completion_feature, mask_prompt
)
elif chat_feature:
return ChatDataset(
ds, tokenizer, chat_key=chat_feature, mask_prompt=mask_prompt
)
elif text_feature:
if mask_prompt:
raise ValueError("Prompt masking not supported for text dataset.")
return Dataset(ds, tokenizer, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature, a chat feature,"
" or a text feature for the Hugging Face dataset."
)
return create_dataset(ds, tokenizer, config)
dataset_collection = args.hf_dataset
if isinstance(dataset_collection, dict):
@ -227,31 +206,23 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
for ds in dataset_collection:
ds_name = ds["name"]
print(f"Loading Hugging Face dataset {ds_name}.")
text_f = ds.get("text_feature", None)
prompt_f = ds.get("prompt_feature", None)
completion_f = ds.get("completion_feature", None)
chat_f = ds.get("chat_feature", None)
ds_config = ds.get("config", {})
ds["mask_prompt"] = getattr(args, "mask_prompt", False)
config = types.SimpleNamespace(**ds)
hf_config = ds.get("config", {})
if args.train:
train_split = ds.get("train_split", "train[:80%]")
valid_split = ds.get("valid_split", "train[-10%:]")
train = create_hf_dataset(
ds_name,
text_f,
prompt_f,
completion_f,
chat_f,
config,
train_split,
ds_config,
hf_config,
)
valid = create_hf_dataset(
ds_name,
text_f,
prompt_f,
completion_f,
chat_f,
config,
valid_split,
ds_config,
hf_config,
)
else:
train, valid = [], []
@ -260,12 +231,9 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
test_split = ds.get("test_split")
test = create_hf_dataset(
ds_name,
text_f,
prompt_f,
completion_f,
chat_f,
config,
test_split,
ds_config,
hf_config,
)
else:
test = []