* in place kv_cache

* fix

* fix kv cache size

* partially fix kv cache dtype

* step kv cache

* multiple of step size

* more teests + kv cache

* more kv cache

* udpate all models to use kv cache
This commit is contained in:
Awni Hannun
2024-05-08 08:18:13 -07:00
committed by GitHub
parent bfbc0e434a
commit ee60e2a9d5
22 changed files with 534 additions and 298 deletions

View File

@@ -65,11 +65,9 @@ class Attention(nn.Module):
)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
@@ -78,7 +76,7 @@ class Attention(nn.Module):
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(output), (keys, values)
return self.out_proj(output)
class NormAttnNorm(nn.Module):
@@ -94,9 +92,9 @@ class NormAttnNorm(nn.Module):
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
h, cache = self.attn(self.norm_1(x), mask=mask, cache=cache)
h = self.attn(self.norm_1(x), mask=mask, cache=cache)
x = h + x
return x, self.norm_2(x), cache
return x, self.norm_2(x)
class MLP(nn.Module):
@@ -181,9 +179,9 @@ class DecoderLayer(nn.Module):
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, h, cache = self.norm_attn_norm(x, mask, cache)
r, h = self.norm_attn_norm(x, mask, cache)
out = self.ffn(h) + r
return out, cache
return out
class DBRX(nn.Module):
@@ -210,10 +208,10 @@ class DBRX(nn.Module):
if cache is None:
cache = [None] * len(self.blocks)
for e, layer in enumerate(self.blocks):
h, cache[e] = layer(h, mask, cache[e])
for layer, c in zip(self.blocks, cache):
h = layer(h, mask, c)
return self.norm_f(h), cache
return self.norm_f(h)
class Model(nn.Module):
@@ -229,8 +227,8 @@ class Model(nn.Module):
inputs: mx.array,
cache=None,
):
out, cache = self.transformer(inputs, cache)
return self.lm_head(out), cache
out = self.transformer(inputs, cache)
return self.lm_head(out)
@property
def layers(self):
@@ -253,3 +251,11 @@ class Model(nn.Module):
experts = [(s, sv.T) for s, sv in experts]
new_weights.update(experts)
return new_weights
@property
def head_dim(self):
return self.args.d_model // self.args.n_heads
@property
def n_kv_heads(self):
return self.args.attn_config["kv_n_heads"]