mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
Kv cache (#643)
* in place kv_cache * fix * fix kv cache size * partially fix kv cache dtype * step kv cache * multiple of step size * more teests + kv cache * more kv cache * udpate all models to use kv cache
This commit is contained in:
@@ -65,11 +65,9 @@ class Attention(nn.Module):
|
||||
)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
@@ -78,7 +76,7 @@ class Attention(nn.Module):
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.out_proj(output), (keys, values)
|
||||
return self.out_proj(output)
|
||||
|
||||
|
||||
class NormAttnNorm(nn.Module):
|
||||
@@ -94,9 +92,9 @@ class NormAttnNorm(nn.Module):
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
h, cache = self.attn(self.norm_1(x), mask=mask, cache=cache)
|
||||
h = self.attn(self.norm_1(x), mask=mask, cache=cache)
|
||||
x = h + x
|
||||
return x, self.norm_2(x), cache
|
||||
return x, self.norm_2(x)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
@@ -181,9 +179,9 @@ class DecoderLayer(nn.Module):
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, h, cache = self.norm_attn_norm(x, mask, cache)
|
||||
r, h = self.norm_attn_norm(x, mask, cache)
|
||||
out = self.ffn(h) + r
|
||||
return out, cache
|
||||
return out
|
||||
|
||||
|
||||
class DBRX(nn.Module):
|
||||
@@ -210,10 +208,10 @@ class DBRX(nn.Module):
|
||||
if cache is None:
|
||||
cache = [None] * len(self.blocks)
|
||||
|
||||
for e, layer in enumerate(self.blocks):
|
||||
h, cache[e] = layer(h, mask, cache[e])
|
||||
for layer, c in zip(self.blocks, cache):
|
||||
h = layer(h, mask, c)
|
||||
|
||||
return self.norm_f(h), cache
|
||||
return self.norm_f(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
@@ -229,8 +227,8 @@ class Model(nn.Module):
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out, cache = self.transformer(inputs, cache)
|
||||
return self.lm_head(out), cache
|
||||
out = self.transformer(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
@@ -253,3 +251,11 @@ class Model(nn.Module):
|
||||
experts = [(s, sv.T) for s, sv in experts]
|
||||
new_weights.update(experts)
|
||||
return new_weights
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.d_model // self.args.n_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.attn_config["kv_n_heads"]
|
||||
|
Reference in New Issue
Block a user