mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
Kv cache (#643)
* in place kv_cache * fix * fix kv cache size * partially fix kv cache dtype * step kv cache * multiple of step size * more teests + kv cache * more kv cache * udpate all models to use kv cache
This commit is contained in:
@@ -78,11 +78,9 @@ class TransformerBlock(nn.Module):
|
||||
values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
@@ -92,7 +90,7 @@ class TransformerBlock(nn.Module):
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.attn_out(output), (keys, values)
|
||||
return self.attn_out(output)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
@@ -100,13 +98,13 @@ class TransformerBlock(nn.Module):
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.attend(self.att_norm(x), mask, cache)
|
||||
r = self.attend(self.att_norm(x), mask, cache)
|
||||
h = x + r
|
||||
|
||||
x1, x2 = mx.split(self.ff_proj(self.ff_norm(h)), 2, axis=-1)
|
||||
|
||||
out = h + self.ff_out(nn.silu(x2) * x1)
|
||||
return out, cache
|
||||
return out
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
@@ -136,15 +134,15 @@ class Transformer(nn.Module):
|
||||
if cache is None:
|
||||
cache = [None] * len(self.blocks)
|
||||
|
||||
for e, block in enumerate(self.blocks):
|
||||
h, cache[e] = block(h, mask, cache[e])
|
||||
for block, c in zip(self.blocks, cache):
|
||||
h = block(h, mask, c)
|
||||
|
||||
h = self.norm(h)
|
||||
|
||||
if self.weight_tying:
|
||||
return self.wte.as_linear(h), cache
|
||||
|
||||
return self.ff_out(h), cache
|
||||
return self.ff_out(h)
|
||||
|
||||
|
||||
class OlmoModel(nn.Module):
|
||||
@@ -165,6 +163,7 @@ class Model(nn.Module):
|
||||
super().__init__()
|
||||
self.model_type = args.model_type
|
||||
self.model = OlmoModel(args)
|
||||
self.args = args
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
@@ -176,3 +175,11 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.transformer.blocks
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.d_model // self.args.n_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.n_heads
|
||||
|
Reference in New Issue
Block a user