* in place kv_cache

* fix

* fix kv cache size

* partially fix kv cache dtype

* step kv cache

* multiple of step size

* more teests + kv cache

* more kv cache

* udpate all models to use kv cache
This commit is contained in:
Awni Hannun
2024-05-08 08:18:13 -07:00
committed by GitHub
parent bfbc0e434a
commit ee60e2a9d5
22 changed files with 534 additions and 298 deletions

View File

@@ -22,8 +22,7 @@ class ModelArgs(BaseModelArgs):
normalize_qk_projections: bool = True
share_input_output_layers: bool = True
rms_norm_eps: float = 1e-6
rope_theta: float = 10000
rope_traditional: bool = False
rope_freq_constant: float = 10000
def make_divisible(
@@ -73,9 +72,7 @@ class Attention(nn.Module):
self.q_norm = nn.RMSNorm(head_dim, eps=args.rms_norm_eps)
self.k_norm = nn.RMSNorm(head_dim, eps=args.rms_norm_eps)
self.rope = nn.RoPE(
head_dim, traditional=args.rope_traditional, base=args.rope_theta
)
self.rope = nn.RoPE(head_dim, traditional=False, base=args.rope_freq_constant)
def __call__(
self,
@@ -87,12 +84,10 @@ class Attention(nn.Module):
qkv = self.qkv_proj(x)
# [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h] -> [B, (q_h + k_h + v_h), S, h]
qkv = qkv.reshape(
B, L, self.n_heads + (self.n_kv_heads * 2), self.head_dim
).transpose(0, 2, 1, 3)
# [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
queries, keys, values = mx.split(
qkv, [self.n_heads, self.n_heads + self.n_kv_heads], axis=1
)
@@ -103,11 +98,9 @@ class Attention(nn.Module):
keys = self.k_norm(keys)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
@@ -118,7 +111,7 @@ class Attention(nn.Module):
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(output), (keys, values)
return self.out_proj(output)
class MLP(nn.Module):
@@ -159,11 +152,11 @@ class TransformerBlock(nn.Module):
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attn(self.attn_norm(x), mask, cache)
r = self.attn(self.attn_norm(x), mask, cache)
h = x + r
r = self.ffn(self.ffn_norm(h))
out = h + r
return out, cache
return out
class OpenELMModel(nn.Module):
@@ -195,10 +188,10 @@ class OpenELMModel(nn.Module):
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
for layer, c in zip(self.layers, cache):
h = layer(h, mask, cache=c)
return self.norm(h), cache
return self.norm(h)
class Model(nn.Module):
@@ -215,14 +208,22 @@ class Model(nn.Module):
inputs: mx.array,
cache=None,
):
out, cache = self.transformer(inputs, cache)
out = self.transformer(inputs, cache)
if self.args.share_input_output_layers:
out = self.transformer.token_embeddings.as_linear(out)
else:
out = self.lm_head(out)
return out, cache
return out
@property
def layers(self):
return self.transformer.layers
@property
def head_dim(self):
return self.args.head_dim
@property
def n_kv_heads(self):
return self.args.num_kv_heads