mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
Kv cache (#643)
* in place kv_cache * fix * fix kv cache size * partially fix kv cache dtype * step kv cache * multiple of step size * more teests + kv cache * more kv cache * udpate all models to use kv cache
This commit is contained in:
@@ -75,35 +75,29 @@ class PhiAttention(nn.Module):
|
||||
queries = queries.reshape(
|
||||
B,
|
||||
L,
|
||||
n_kv_heads,
|
||||
n_heads // n_kv_heads,
|
||||
n_heads,
|
||||
-1,
|
||||
).moveaxis(1, 3)
|
||||
keys = keys.reshape(B, L, n_kv_heads, 1, -1).moveaxis(1, 3)
|
||||
values = values.reshape(B, L, n_kv_heads, 1, -1).moveaxis(1, 3)
|
||||
).moveaxis(1, 2)
|
||||
keys = keys.reshape(B, L, n_kv_heads, -1).moveaxis(1, 2)
|
||||
values = values.reshape(B, L, n_kv_heads, -1).moveaxis(1, 2)
|
||||
|
||||
# Add RoPE to the queries and keys and combine them with the cache
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[-2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[-2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=-2)
|
||||
values = mx.concatenate([value_cache, values], axis=-2)
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
queries = queries.astype(mx.float32)
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.swapaxes(-1, -2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
||||
output = (scores @ values).moveaxis(3, 1).reshape(B, L, -1)
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries.astype(mx.float32), keys, values, scale=scale, mask=mask
|
||||
).astype(values.dtype)
|
||||
|
||||
return self.dense(output), (keys, values)
|
||||
output = output.moveaxis(2, 1).reshape(B, L, -1)
|
||||
|
||||
return self.dense(output)
|
||||
|
||||
|
||||
class PhiMLP(nn.Module):
|
||||
@@ -128,9 +122,9 @@ class PhiDecoderLayer(nn.Module):
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
h = self.input_layernorm(x)
|
||||
attn_h, cache = self.self_attn(h, mask, cache)
|
||||
attn_h = self.self_attn(h, mask, cache)
|
||||
ff_h = self.mlp(h)
|
||||
return attn_h + ff_h + x, cache
|
||||
return attn_h + ff_h + x
|
||||
|
||||
|
||||
class PhiModel(nn.Module):
|
||||
@@ -152,9 +146,9 @@ class PhiModel(nn.Module):
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(x.dtype)
|
||||
|
||||
for e, layer in enumerate(self.layers):
|
||||
x, cache[e] = layer(x, mask, cache[e])
|
||||
return self.final_layernorm(x), cache
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, mask, c)
|
||||
return self.final_layernorm(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
@@ -163,15 +157,24 @@ class Model(nn.Module):
|
||||
self.model_type = config.model_type
|
||||
self.model = PhiModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
||||
self.args = config
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache: mx.array = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
y, cache = self.model(x, cache)
|
||||
return self.lm_head(y), cache
|
||||
y = self.model(x, cache)
|
||||
return self.lm_head(y)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
Reference in New Issue
Block a user