mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 04:14:38 +08:00
Kv cache (#643)
* in place kv_cache * fix * fix kv cache size * partially fix kv cache dtype * step kv cache * multiple of step size * more teests + kv cache * more kv cache * udpate all models to use kv cache
This commit is contained in:
@@ -81,11 +81,9 @@ class Attention(nn.Module):
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
@@ -94,7 +92,7 @@ class Attention(nn.Module):
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output), (keys, values)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
@@ -128,11 +126,11 @@ class TransformerBlock(nn.Module):
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r
|
||||
return out, cache
|
||||
return out
|
||||
|
||||
|
||||
class Phi3Model(nn.Module):
|
||||
@@ -163,10 +161,10 @@ class Phi3Model(nn.Module):
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for e, layer in enumerate(self.layers):
|
||||
h, cache[e] = layer(h, mask, cache[e])
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, c)
|
||||
|
||||
return self.norm(h), cache
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
@@ -175,15 +173,24 @@ class Model(nn.Module):
|
||||
self.model_type = args.model_type
|
||||
self.model = Phi3Model(args)
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
self.args = args
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out, cache = self.model(inputs, cache)
|
||||
return self.lm_head(out), cache
|
||||
out = self.model(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
Reference in New Issue
Block a user