mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
llama v2 with sharded weights
This commit is contained in:
parent
9a02dce35c
commit
f0c57c1361
@ -1,8 +1,9 @@
|
|||||||
# LLaMA
|
# Llama
|
||||||
|
|
||||||
An example of generating text with LLaMA using MLX.
|
An example of generating text with Llama (1 or 2) using MLX.
|
||||||
|
|
||||||
LLaMA is a set of open source language models from Meta AI Research[^1] ranging from 7B to 65B parameters.
|
Llama is a set of open source language models from Meta AI Research[^1][^2]
|
||||||
|
ranging from 7B to 70B parameters.
|
||||||
|
|
||||||
### Setup
|
### Setup
|
||||||
|
|
||||||
@ -14,27 +15,31 @@ pip install -r requirements.txt
|
|||||||
|
|
||||||
Next, download and convert the model. If you do not have access to the model
|
Next, download and convert the model. If you do not have access to the model
|
||||||
weights you will need to [request
|
weights you will need to [request
|
||||||
access](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
|
access](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
|
||||||
from Meta.
|
from Meta.
|
||||||
|
|
||||||
|
Alternatively, you can also download a select converted checkpoints from the
|
||||||
Alternatively, you can also download a select converted checkpoints from the [mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging Face and skip the conversion step.
|
[mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging
|
||||||
|
Face and skip the conversion step.
|
||||||
|
|
||||||
Convert the weights with:
|
Convert the weights with:
|
||||||
|
|
||||||
```
|
```
|
||||||
python convert.py <path_to_torch_weights> <path_to_mlx_llama_weights.npz>
|
python convert.py --model_path <path_to_torch_model>
|
||||||
```
|
```
|
||||||
|
|
||||||
|
The conversion script will save the converted weights in the same location.
|
||||||
|
|
||||||
### Run
|
### Run
|
||||||
|
|
||||||
Once you've converted the weights to MLX format, you can interact with the
|
Once you've converted the weights to MLX format, you can interact with the
|
||||||
LLaMA model:
|
LlaMA model:
|
||||||
|
|
||||||
```
|
```
|
||||||
python llama.py <path_to_mlx_llama_weights.npz> <path_to_tokenizer.model> "hello"
|
python llama.py <path_to_model> <path_to_tokenizer.model> "hello"
|
||||||
```
|
```
|
||||||
|
|
||||||
Run `python llama.py --help` for more details.
|
Run `python llama.py --help` for more details.
|
||||||
|
|
||||||
[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
[^1]: For Llama v1 refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
||||||
|
[^2]: For Llama v2 refer to the [blob post](https://ai.meta.com/llama/)
|
||||||
|
@ -1,53 +1,59 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
# Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
from itertools import starmap
|
import collections
|
||||||
|
import glob
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
SHARD_FIRST = ["wv", "wq", "wk", "w1", "w3", "output"]
|
||||||
|
SHARD_SECOND = ["tok_embeddings", "wo", "w2"]
|
||||||
|
SHARD_WEIGHTS = set(SHARD_FIRST + SHARD_SECOND)
|
||||||
|
|
||||||
def map_torch_to_mlx(key, value):
|
|
||||||
if "tok_embedding" in key:
|
|
||||||
key = "embedding.weight"
|
|
||||||
|
|
||||||
elif "norm" in key:
|
def shard_key(k):
|
||||||
key = key.replace("attention_norm", "norm1").replace("ffn_norm", "norm2")
|
keys = k.split(".")
|
||||||
|
if len(keys) < 2:
|
||||||
|
return None
|
||||||
|
return keys[-2]
|
||||||
|
|
||||||
elif "wq" in key or "wk" in key or "wv" in key or "wo" in key:
|
|
||||||
key = key.replace("wq", "query_proj")
|
|
||||||
key = key.replace("wk", "key_proj")
|
|
||||||
key = key.replace("wv", "value_proj")
|
|
||||||
key = key.replace("wo", "out_proj")
|
|
||||||
|
|
||||||
elif "w1" in key or "w2" in key or "w3" in key:
|
def unshard(k, v):
|
||||||
# The FFN is a separate submodule in PyTorch
|
wn = shard_key(k)
|
||||||
key = key.replace("feed_forward.w1", "linear1")
|
if wn not in SHARD_WEIGHTS:
|
||||||
key = key.replace("feed_forward.w3", "linear2")
|
return v
|
||||||
key = key.replace("feed_forward.w2", "linear3")
|
elif wn in SHARD_FIRST:
|
||||||
|
axis = 0
|
||||||
elif "output" in key:
|
elif wn in SHARD_SECOND:
|
||||||
key = key.replace("output", "out_proj")
|
axis = 1
|
||||||
|
else:
|
||||||
elif "rope" in key:
|
raise ValueError("Invalid weight name")
|
||||||
return None, None
|
return np.concatenate(v, axis=axis)
|
||||||
|
|
||||||
return (
|
|
||||||
key,
|
|
||||||
value.numpy()
|
|
||||||
if value.dtype != torch.bfloat16
|
|
||||||
else value.to(torch.float32).numpy(),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||||||
parser.add_argument("torch_weights")
|
parser.add_argument(
|
||||||
parser.add_argument("output_file")
|
"--model_path",
|
||||||
|
help="Path to the Torch model. The MLX weights will also be saved there.",
|
||||||
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
state = torch.load(args.torch_weights, map_location=torch.device('cpu'))
|
model_path = Path(args.model_path)
|
||||||
np.savez(
|
torch_files = glob.glob(str(model_path / "consolidated.*.pth"))
|
||||||
args.output_file,
|
weights = collections.defaultdict(list)
|
||||||
**{k: v for k, v in starmap(map_torch_to_mlx, state.items()) if k is not None}
|
for wf in torch_files:
|
||||||
)
|
state = torch.load(wf, map_location=torch.device("cpu"))
|
||||||
|
for k, v in state.items():
|
||||||
|
v = v.to(torch.float16).numpy()
|
||||||
|
if shard_key(k) in SHARD_WEIGHTS:
|
||||||
|
weights[k].append(v)
|
||||||
|
else:
|
||||||
|
weights[k] = v
|
||||||
|
|
||||||
|
out_file = str(model_path / "weights.npz")
|
||||||
|
for k, v in weights.items():
|
||||||
|
weights[k] = unshard(k, v)
|
||||||
|
np.savez(out_file, **weights)
|
||||||
|
206
llama/llama.py
206
llama/llama.py
@ -1,8 +1,10 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
# Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import math
|
from dataclasses import dataclass
|
||||||
import numpy as np
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, Tuple, List
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
import time
|
import time
|
||||||
|
|
||||||
@ -11,33 +13,71 @@ import mlx.nn as nn
|
|||||||
from mlx.utils import tree_unflatten
|
from mlx.utils import tree_unflatten
|
||||||
|
|
||||||
|
|
||||||
class LlamaAttention(nn.Module):
|
@dataclass
|
||||||
def __init__(self, dims: int, num_heads: int):
|
class ModelArgs:
|
||||||
|
dim: int
|
||||||
|
n_layers: int
|
||||||
|
head_dim: int
|
||||||
|
hidden_dim: int
|
||||||
|
n_heads: int
|
||||||
|
n_kv_heads: int
|
||||||
|
norm_eps: float
|
||||||
|
vocab_size: int
|
||||||
|
|
||||||
|
|
||||||
|
class RMSNorm(nn.Module):
|
||||||
|
def __init__(self, dims: int, eps: float = 1e-5):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.weight = mx.ones((dims,))
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
self.num_heads = num_heads
|
def _norm(self, x):
|
||||||
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||||
|
|
||||||
self.rope = nn.RoPE(dims // num_heads, traditional=True)
|
def __call__(self, x):
|
||||||
self.query_proj = nn.Linear(dims, dims, bias=False)
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||||
self.key_proj = nn.Linear(dims, dims, bias=False)
|
return self.weight * output
|
||||||
self.value_proj = nn.Linear(dims, dims, bias=False)
|
|
||||||
self.out_proj = nn.Linear(dims, dims, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, queries, keys, values, mask=None, cache=None):
|
|
||||||
queries = self.query_proj(queries)
|
|
||||||
keys = self.key_proj(keys)
|
|
||||||
values = self.value_proj(values)
|
|
||||||
|
|
||||||
# Extract some shapes
|
class Attention(nn.Module):
|
||||||
num_heads = self.num_heads
|
def __init__(self, args: ModelArgs):
|
||||||
B, L, D = queries.shape
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
self.n_heads: int = args.n_heads
|
||||||
|
self.n_kv_heads: int = args.n_kv_heads
|
||||||
|
|
||||||
|
self.repeats = self.n_heads // self.n_kv_heads
|
||||||
|
|
||||||
|
self.scale = self.args.head_dim**-0.5
|
||||||
|
|
||||||
|
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
||||||
|
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||||
|
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||||
|
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
||||||
|
self.rope = nn.RoPE(args.head_dim, traditional=True)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
B, L, D = x.shape
|
||||||
|
|
||||||
|
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
||||||
|
|
||||||
# Prepare the queries, keys and values for the attention computation
|
# Prepare the queries, keys and values for the attention computation
|
||||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
def repeat(a):
|
||||||
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||||
|
return a.reshape([B, self.n_heads, L, -1])
|
||||||
|
|
||||||
|
keys, values = map(repeat, (keys, values))
|
||||||
|
|
||||||
# Add RoPE to the queries and keys and combine them with the cache
|
|
||||||
if cache is not None:
|
if cache is not None:
|
||||||
key_cache, value_cache = cache
|
key_cache, value_cache = cache
|
||||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||||
@ -48,86 +88,87 @@ class LlamaAttention(nn.Module):
|
|||||||
queries = self.rope(queries)
|
queries = self.rope(queries)
|
||||||
keys = self.rope(keys)
|
keys = self.rope(keys)
|
||||||
|
|
||||||
# Finally perform the attention computation
|
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||||
scale = math.sqrt(1 / queries.shape[-1])
|
|
||||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
scores = scores + mask
|
scores += mask
|
||||||
scores = mx.softmax(scores, axis=-1)
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
return self.wo(output), (keys, values)
|
||||||
# Note that we return the keys and values to possibly be used as a cache
|
|
||||||
return self.out_proj(values_hat), (keys, values)
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaEncoderLayer(nn.Module):
|
class FeedForward(nn.Module):
|
||||||
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.attention = LlamaAttention(dims, num_heads)
|
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||||
|
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
||||||
|
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||||
|
|
||||||
self.norm1 = nn.RMSNorm(dims)
|
def __call__(self, x) -> mx.array:
|
||||||
self.norm2 = nn.RMSNorm(dims)
|
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
||||||
|
|
||||||
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
|
|
||||||
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
|
|
||||||
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, x, mask=None, cache=None):
|
class TransformerBlock(nn.Module):
|
||||||
y = self.norm1(x)
|
def __init__(self, args: ModelArgs):
|
||||||
y, cache = self.attention(y, y, y, mask, cache)
|
super().__init__()
|
||||||
x = x + y
|
self.n_heads = args.n_heads
|
||||||
|
self.dim = args.dim
|
||||||
|
self.attention = Attention(args)
|
||||||
|
self.feed_forward = FeedForward(args=args)
|
||||||
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||||
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||||
|
self.args = args
|
||||||
|
|
||||||
y = self.norm2(x)
|
def __call__(
|
||||||
a = self.linear1(y)
|
self,
|
||||||
b = self.linear2(y)
|
x: mx.array,
|
||||||
y = a * mx.sigmoid(a) * b
|
mask: Optional[mx.array] = None,
|
||||||
y = self.linear3(y)
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
x = x + y
|
) -> mx.array:
|
||||||
|
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
||||||
return x, cache
|
h = x + r
|
||||||
|
r = self.feed_forward(self.ffn_norm(h))
|
||||||
|
out = h + r
|
||||||
|
return out, cache
|
||||||
|
|
||||||
|
|
||||||
class Llama(nn.Module):
|
class Llama(nn.Module):
|
||||||
def __init__(
|
def __init__(self, args: ModelArgs):
|
||||||
self, num_layers: int, vocab_size: int, dims: int, mlp_dims: int, num_heads: int
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
self.embedding = nn.Embedding(vocab_size, dims)
|
self.vocab_size = args.vocab_size
|
||||||
self.layers = [
|
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
||||||
LlamaEncoderLayer(dims, mlp_dims, num_heads) for _ in range(num_layers)
|
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
||||||
]
|
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||||
self.norm = nn.RMSNorm(dims)
|
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
||||||
self.out_proj = nn.Linear(dims, vocab_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||||
mask = mask.astype(self.embedding.weight.dtype)
|
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||||
|
|
||||||
x = self.embedding(x)
|
x = self.tok_embeddings(x)
|
||||||
for l in self.layers:
|
for l in self.layers:
|
||||||
x, _ = l(x, mask)
|
x, _ = l(x, mask)
|
||||||
x = self.norm(x)
|
x = self.norm(x)
|
||||||
return self.out_proj(x)
|
return self.output(x)
|
||||||
|
|
||||||
def generate(self, x, temp=1.0):
|
def generate(self, x, temp=1.0):
|
||||||
cache = []
|
cache = []
|
||||||
|
|
||||||
# Make an additive causal mask. We will need that to process the prompt.
|
# Make an additive causal mask. We will need that to process the prompt.
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||||
mask = mask.astype(self.embedding.weight.dtype)
|
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||||
|
|
||||||
# First we process the prompt x the same was as in __call__ but
|
# First we process the prompt x the same was as in __call__ but
|
||||||
# save the caches in cache
|
# save the caches in cache
|
||||||
x = self.embedding(x)
|
x = self.tok_embeddings(x)
|
||||||
for l in self.layers:
|
for l in self.layers:
|
||||||
x, c = l(x, mask=mask)
|
x, c = l(x, mask=mask)
|
||||||
# We store the per layer cache in a simple python list
|
# We store the per layer cache in a simple python list
|
||||||
cache.append(c)
|
cache.append(c)
|
||||||
x = self.norm(x)
|
x = self.norm(x)
|
||||||
# We only care about the last logits that generate the next token
|
# We only care about the last logits that generate the next token
|
||||||
y = self.out_proj(x[:, -1])
|
y = self.output(x[:, -1])
|
||||||
y = mx.random.categorical(y * (1 / temp))
|
y = mx.random.categorical(y * (1 / temp))
|
||||||
|
|
||||||
# y now has size [1]
|
# y now has size [1]
|
||||||
@ -145,14 +186,14 @@ class Llama(nn.Module):
|
|||||||
# dimension of 1
|
# dimension of 1
|
||||||
x = y[:, None]
|
x = y[:, None]
|
||||||
|
|
||||||
x = self.embedding(x)
|
x = self.tok_embeddings(x)
|
||||||
for i in range(len(cache)):
|
for i in range(len(cache)):
|
||||||
# We are overwriting the arrays in the cache list. When
|
# We are overwriting the arrays in the cache list. When
|
||||||
# the computation will happen, MLX will be discarding the
|
# the computation will happen, MLX will be discarding the
|
||||||
# old cache the moment it is not needed anymore.
|
# old cache the moment it is not needed anymore.
|
||||||
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
||||||
x = self.norm(x)
|
x = self.norm(x)
|
||||||
y = self.out_proj(x[:, -1])
|
y = self.output(x[:, -1])
|
||||||
y = mx.random.categorical(y * (1 / temp))
|
y = mx.random.categorical(y * (1 / temp))
|
||||||
|
|
||||||
yield y
|
yield y
|
||||||
@ -261,20 +302,33 @@ def few_shot_generate(args):
|
|||||||
|
|
||||||
|
|
||||||
def load_model(model_path):
|
def load_model(model_path):
|
||||||
weights = mx.load(model_path)
|
model_path = Path(model_path)
|
||||||
mlp_dims, dims = weights["layers.0.linear1.weight"].shape
|
weights = mx.load(str(model_path / "weights.npz"))
|
||||||
num_heads = dims // 128
|
with open(model_path / "params.json", "r") as f:
|
||||||
num_layers = max(int(l.split(".")[1]) for l in weights.keys() if "layers" in l) + 1
|
config = json.loads(f.read())
|
||||||
vocab_size = weights["out_proj.weight"].shape[-1]
|
n_heads = config["n_heads"]
|
||||||
model = Llama(num_layers, vocab_size, dims, mlp_dims, num_heads)
|
if "n_kv_heads" not in config:
|
||||||
|
config["n_kv_heads"] = n_heads
|
||||||
|
if "head_dim" not in config:
|
||||||
|
config["head_dim"] = config["dim"] // n_heads
|
||||||
|
if "hidden_dim" not in config:
|
||||||
|
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||||
|
if config.get("vocab_size", -1) < 0:
|
||||||
|
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||||
|
unused = ["multiple_of", "ffn_dim_multiplie"]
|
||||||
|
for k in unused:
|
||||||
|
if k in config:
|
||||||
|
config.pop(k)
|
||||||
|
model = Llama(ModelArgs(**config))
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
model.update(tree_unflatten(list(weights.items())))
|
||||||
mx.eval(model.parameters())
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Llama inference script")
|
parser = argparse.ArgumentParser(description="Llama inference script")
|
||||||
parser.add_argument("model", help="The model file containing MLX weights")
|
parser.add_argument(
|
||||||
|
"model", help="Path to the model directory containing the MLX weights"
|
||||||
|
)
|
||||||
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
|
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
|
||||||
parser.add_argument("prompt", help="The message to be processed by the model")
|
parser.add_argument("prompt", help="The message to be processed by the model")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@ -1,2 +1,3 @@
|
|||||||
|
mlx
|
||||||
sentencepiece
|
sentencepiece
|
||||||
torch
|
torch
|
||||||
|
@ -46,7 +46,7 @@ rm mixtral-8x7b-32kseqlen/*.pth*
|
|||||||
As easy as:
|
As easy as:
|
||||||
|
|
||||||
```
|
```
|
||||||
python mixtral.py --model_path mixtral mixtral-8x7b-32kseqlen/
|
python mixtral.py --model_path mixtral-8x7b-32kseqlen/
|
||||||
```
|
```
|
||||||
|
|
||||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||||
|
Loading…
Reference in New Issue
Block a user