mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
llama v2 with sharded weights
This commit is contained in:
parent
9a02dce35c
commit
f0c57c1361
@ -1,8 +1,9 @@
|
||||
# LLaMA
|
||||
# Llama
|
||||
|
||||
An example of generating text with LLaMA using MLX.
|
||||
An example of generating text with Llama (1 or 2) using MLX.
|
||||
|
||||
LLaMA is a set of open source language models from Meta AI Research[^1] ranging from 7B to 65B parameters.
|
||||
Llama is a set of open source language models from Meta AI Research[^1][^2]
|
||||
ranging from 7B to 70B parameters.
|
||||
|
||||
### Setup
|
||||
|
||||
@ -14,27 +15,31 @@ pip install -r requirements.txt
|
||||
|
||||
Next, download and convert the model. If you do not have access to the model
|
||||
weights you will need to [request
|
||||
access](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
|
||||
access](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
|
||||
from Meta.
|
||||
|
||||
|
||||
Alternatively, you can also download a select converted checkpoints from the [mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging Face and skip the conversion step.
|
||||
Alternatively, you can also download a select converted checkpoints from the
|
||||
[mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging
|
||||
Face and skip the conversion step.
|
||||
|
||||
Convert the weights with:
|
||||
|
||||
```
|
||||
python convert.py <path_to_torch_weights> <path_to_mlx_llama_weights.npz>
|
||||
python convert.py --model_path <path_to_torch_model>
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
|
||||
### Run
|
||||
|
||||
Once you've converted the weights to MLX format, you can interact with the
|
||||
LLaMA model:
|
||||
LlaMA model:
|
||||
|
||||
```
|
||||
python llama.py <path_to_mlx_llama_weights.npz> <path_to_tokenizer.model> "hello"
|
||||
python llama.py <path_to_model> <path_to_tokenizer.model> "hello"
|
||||
```
|
||||
|
||||
Run `python llama.py --help` for more details.
|
||||
|
||||
[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
||||
[^1]: For Llama v1 refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
||||
[^2]: For Llama v2 refer to the [blob post](https://ai.meta.com/llama/)
|
||||
|
@ -1,53 +1,59 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
from itertools import starmap
|
||||
import collections
|
||||
import glob
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
SHARD_FIRST = ["wv", "wq", "wk", "w1", "w3", "output"]
|
||||
SHARD_SECOND = ["tok_embeddings", "wo", "w2"]
|
||||
SHARD_WEIGHTS = set(SHARD_FIRST + SHARD_SECOND)
|
||||
|
||||
def map_torch_to_mlx(key, value):
|
||||
if "tok_embedding" in key:
|
||||
key = "embedding.weight"
|
||||
|
||||
elif "norm" in key:
|
||||
key = key.replace("attention_norm", "norm1").replace("ffn_norm", "norm2")
|
||||
def shard_key(k):
|
||||
keys = k.split(".")
|
||||
if len(keys) < 2:
|
||||
return None
|
||||
return keys[-2]
|
||||
|
||||
elif "wq" in key or "wk" in key or "wv" in key or "wo" in key:
|
||||
key = key.replace("wq", "query_proj")
|
||||
key = key.replace("wk", "key_proj")
|
||||
key = key.replace("wv", "value_proj")
|
||||
key = key.replace("wo", "out_proj")
|
||||
|
||||
elif "w1" in key or "w2" in key or "w3" in key:
|
||||
# The FFN is a separate submodule in PyTorch
|
||||
key = key.replace("feed_forward.w1", "linear1")
|
||||
key = key.replace("feed_forward.w3", "linear2")
|
||||
key = key.replace("feed_forward.w2", "linear3")
|
||||
|
||||
elif "output" in key:
|
||||
key = key.replace("output", "out_proj")
|
||||
|
||||
elif "rope" in key:
|
||||
return None, None
|
||||
|
||||
return (
|
||||
key,
|
||||
value.numpy()
|
||||
if value.dtype != torch.bfloat16
|
||||
else value.to(torch.float32).numpy(),
|
||||
)
|
||||
def unshard(k, v):
|
||||
wn = shard_key(k)
|
||||
if wn not in SHARD_WEIGHTS:
|
||||
return v
|
||||
elif wn in SHARD_FIRST:
|
||||
axis = 0
|
||||
elif wn in SHARD_SECOND:
|
||||
axis = 1
|
||||
else:
|
||||
raise ValueError("Invalid weight name")
|
||||
return np.concatenate(v, axis=axis)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||||
parser.add_argument("torch_weights")
|
||||
parser.add_argument("output_file")
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
help="Path to the Torch model. The MLX weights will also be saved there.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
state = torch.load(args.torch_weights, map_location=torch.device('cpu'))
|
||||
np.savez(
|
||||
args.output_file,
|
||||
**{k: v for k, v in starmap(map_torch_to_mlx, state.items()) if k is not None}
|
||||
)
|
||||
model_path = Path(args.model_path)
|
||||
torch_files = glob.glob(str(model_path / "consolidated.*.pth"))
|
||||
weights = collections.defaultdict(list)
|
||||
for wf in torch_files:
|
||||
state = torch.load(wf, map_location=torch.device("cpu"))
|
||||
for k, v in state.items():
|
||||
v = v.to(torch.float16).numpy()
|
||||
if shard_key(k) in SHARD_WEIGHTS:
|
||||
weights[k].append(v)
|
||||
else:
|
||||
weights[k] = v
|
||||
|
||||
out_file = str(model_path / "weights.npz")
|
||||
for k, v in weights.items():
|
||||
weights[k] = unshard(k, v)
|
||||
np.savez(out_file, **weights)
|
||||
|
206
llama/llama.py
206
llama/llama.py
@ -1,8 +1,10 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple, List
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
import time
|
||||
|
||||
@ -11,33 +13,71 @@ import mlx.nn as nn
|
||||
from mlx.utils import tree_unflatten
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int):
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
dim: int
|
||||
n_layers: int
|
||||
head_dim: int
|
||||
hidden_dim: int
|
||||
n_heads: int
|
||||
n_kv_heads: int
|
||||
norm_eps: float
|
||||
vocab_size: int
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
self.num_heads = num_heads
|
||||
def _norm(self, x):
|
||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||
|
||||
self.rope = nn.RoPE(dims // num_heads, traditional=True)
|
||||
self.query_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.key_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.value_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.out_proj = nn.Linear(dims, dims, bias=False)
|
||||
def __call__(self, x):
|
||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||
return self.weight * output
|
||||
|
||||
def __call__(self, queries, keys, values, mask=None, cache=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
# Extract some shapes
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.n_heads: int = args.n_heads
|
||||
self.n_kv_heads: int = args.n_kv_heads
|
||||
|
||||
self.repeats = self.n_heads // self.n_kv_heads
|
||||
|
||||
self.scale = self.args.head_dim**-0.5
|
||||
|
||||
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
||||
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
||||
self.rope = nn.RoPE(args.head_dim, traditional=True)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
def repeat(a):
|
||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||
return a.reshape([B, self.n_heads, L, -1])
|
||||
|
||||
keys, values = map(repeat, (keys, values))
|
||||
|
||||
# Add RoPE to the queries and keys and combine them with the cache
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
@ -48,86 +88,87 @@ class LlamaAttention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
# Note that we return the keys and values to possibly be used as a cache
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.wo(output), (keys, values)
|
||||
|
||||
|
||||
class LlamaEncoderLayer(nn.Module):
|
||||
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.attention = LlamaAttention(dims, num_heads)
|
||||
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
||||
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||
|
||||
self.norm1 = nn.RMSNorm(dims)
|
||||
self.norm2 = nn.RMSNorm(dims)
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
y = self.norm1(x)
|
||||
y, cache = self.attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_heads = args.n_heads
|
||||
self.dim = args.dim
|
||||
self.attention = Attention(args)
|
||||
self.feed_forward = FeedForward(args=args)
|
||||
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.args = args
|
||||
|
||||
y = self.norm2(x)
|
||||
a = self.linear1(y)
|
||||
b = self.linear2(y)
|
||||
y = a * mx.sigmoid(a) * b
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.feed_forward(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out, cache
|
||||
|
||||
|
||||
class Llama(nn.Module):
|
||||
def __init__(
|
||||
self, num_layers: int, vocab_size: int, dims: int, mlp_dims: int, num_heads: int
|
||||
):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.embedding = nn.Embedding(vocab_size, dims)
|
||||
self.layers = [
|
||||
LlamaEncoderLayer(dims, mlp_dims, num_heads) for _ in range(num_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(dims)
|
||||
self.out_proj = nn.Linear(dims, vocab_size, bias=False)
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
||||
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
||||
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, x):
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.embedding.weight.dtype)
|
||||
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||
|
||||
x = self.embedding(x)
|
||||
x = self.tok_embeddings(x)
|
||||
for l in self.layers:
|
||||
x, _ = l(x, mask)
|
||||
x = self.norm(x)
|
||||
return self.out_proj(x)
|
||||
return self.output(x)
|
||||
|
||||
def generate(self, x, temp=1.0):
|
||||
cache = []
|
||||
|
||||
# Make an additive causal mask. We will need that to process the prompt.
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.embedding.weight.dtype)
|
||||
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||
|
||||
# First we process the prompt x the same was as in __call__ but
|
||||
# save the caches in cache
|
||||
x = self.embedding(x)
|
||||
x = self.tok_embeddings(x)
|
||||
for l in self.layers:
|
||||
x, c = l(x, mask=mask)
|
||||
# We store the per layer cache in a simple python list
|
||||
cache.append(c)
|
||||
x = self.norm(x)
|
||||
# We only care about the last logits that generate the next token
|
||||
y = self.out_proj(x[:, -1])
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
# y now has size [1]
|
||||
@ -145,14 +186,14 @@ class Llama(nn.Module):
|
||||
# dimension of 1
|
||||
x = y[:, None]
|
||||
|
||||
x = self.embedding(x)
|
||||
x = self.tok_embeddings(x)
|
||||
for i in range(len(cache)):
|
||||
# We are overwriting the arrays in the cache list. When
|
||||
# the computation will happen, MLX will be discarding the
|
||||
# old cache the moment it is not needed anymore.
|
||||
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
||||
x = self.norm(x)
|
||||
y = self.out_proj(x[:, -1])
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
yield y
|
||||
@ -261,20 +302,33 @@ def few_shot_generate(args):
|
||||
|
||||
|
||||
def load_model(model_path):
|
||||
weights = mx.load(model_path)
|
||||
mlp_dims, dims = weights["layers.0.linear1.weight"].shape
|
||||
num_heads = dims // 128
|
||||
num_layers = max(int(l.split(".")[1]) for l in weights.keys() if "layers" in l) + 1
|
||||
vocab_size = weights["out_proj.weight"].shape[-1]
|
||||
model = Llama(num_layers, vocab_size, dims, mlp_dims, num_heads)
|
||||
model_path = Path(model_path)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
with open(model_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
unused = ["multiple_of", "ffn_dim_multiplie"]
|
||||
for k in unused:
|
||||
if k in config:
|
||||
config.pop(k)
|
||||
model = Llama(ModelArgs(**config))
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
mx.eval(model.parameters())
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Llama inference script")
|
||||
parser.add_argument("model", help="The model file containing MLX weights")
|
||||
parser.add_argument(
|
||||
"model", help="Path to the model directory containing the MLX weights"
|
||||
)
|
||||
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
|
||||
parser.add_argument("prompt", help="The message to be processed by the model")
|
||||
parser.add_argument(
|
||||
|
@ -1,2 +1,3 @@
|
||||
mlx
|
||||
sentencepiece
|
||||
torch
|
||||
|
@ -46,7 +46,7 @@ rm mixtral-8x7b-32kseqlen/*.pth*
|
||||
As easy as:
|
||||
|
||||
```
|
||||
python mixtral.py --model_path mixtral mixtral-8x7b-32kseqlen/
|
||||
python mixtral.py --model_path mixtral-8x7b-32kseqlen/
|
||||
```
|
||||
|
||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
|
Loading…
Reference in New Issue
Block a user