mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
Update a few examples to use compile (#420)
* update a few examples to use compile * update mnist * add compile to vae and rename some stuff for simplicity * update reqs * use state in eval * GCN example with RNG + dropout * add a bit of prefetching
This commit is contained in:
172
cvae/vae.py
Normal file
172
cvae/vae.py
Normal file
@@ -0,0 +1,172 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
|
||||
# from https://github.com/ml-explore/mlx-examples/blob/main/stable_diffusion/stable_diffusion/unet.py
|
||||
def upsample_nearest(x, scale: int = 2):
|
||||
B, H, W, C = x.shape
|
||||
x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
|
||||
x = x.reshape(B, H * scale, W * scale, C)
|
||||
return x
|
||||
|
||||
|
||||
class UpsamplingConv2d(nn.Module):
|
||||
"""
|
||||
A convolutional layer that upsamples the input by a factor of 2. MLX does
|
||||
not yet support transposed convolutions, so we approximate them with
|
||||
nearest neighbor upsampling followed by a convolution. This is similar to
|
||||
the approach used in the original U-Net.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size, stride=stride, padding=padding
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.conv(upsample_nearest(x))
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
"""
|
||||
A convolutional variational encoder.
|
||||
Maps the input to a normal distribution in latent space and sample a latent
|
||||
vector from that distribution.
|
||||
"""
|
||||
|
||||
def __init__(self, num_latent_dims, image_shape, max_num_filters):
|
||||
super().__init__()
|
||||
|
||||
# number of filters in the convolutional layers
|
||||
num_filters_1 = max_num_filters // 4
|
||||
num_filters_2 = max_num_filters // 2
|
||||
num_filters_3 = max_num_filters
|
||||
|
||||
# Output (BHWC): B x 32 x 32 x num_filters_1
|
||||
self.conv1 = nn.Conv2d(image_shape[-1], num_filters_1, 3, stride=2, padding=1)
|
||||
# Output (BHWC): B x 16 x 16 x num_filters_2
|
||||
self.conv2 = nn.Conv2d(num_filters_1, num_filters_2, 3, stride=2, padding=1)
|
||||
# Output (BHWC): B x 8 x 8 x num_filters_3
|
||||
self.conv3 = nn.Conv2d(num_filters_2, num_filters_3, 3, stride=2, padding=1)
|
||||
|
||||
# Batch Normalization
|
||||
self.bn1 = nn.BatchNorm(num_filters_1)
|
||||
self.bn2 = nn.BatchNorm(num_filters_2)
|
||||
self.bn3 = nn.BatchNorm(num_filters_3)
|
||||
|
||||
# Divide the spatial dimensions by 8 because of the 3 strided convolutions
|
||||
output_shape = [num_filters_3] + [
|
||||
dimension // 8 for dimension in image_shape[:-1]
|
||||
]
|
||||
|
||||
flattened_dim = math.prod(output_shape)
|
||||
|
||||
# Linear mappings to mean and standard deviation
|
||||
self.proj_mu = nn.Linear(flattened_dim, num_latent_dims)
|
||||
self.proj_log_var = nn.Linear(flattened_dim, num_latent_dims)
|
||||
|
||||
def __call__(self, x):
|
||||
x = nn.leaky_relu(self.bn1(self.conv1(x)))
|
||||
x = nn.leaky_relu(self.bn2(self.conv2(x)))
|
||||
x = nn.leaky_relu(self.bn3(self.conv3(x)))
|
||||
x = mx.flatten(x, 1) # flatten all dimensions except batch
|
||||
|
||||
mu = self.proj_mu(x)
|
||||
logvar = self.proj_log_var(x)
|
||||
# Ensure this is the std deviation, not variance
|
||||
sigma = mx.exp(logvar * 0.5)
|
||||
|
||||
# Generate a tensor of random values from a normal distribution
|
||||
eps = mx.random.normal(sigma.shape)
|
||||
|
||||
# Reparametrization trick to brackpropagate through sampling.
|
||||
z = eps * sigma + mu
|
||||
|
||||
return z, mu, logvar
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""A convolutional decoder"""
|
||||
|
||||
def __init__(self, num_latent_dims, image_shape, max_num_filters):
|
||||
super().__init__()
|
||||
self.num_latent_dims = num_latent_dims
|
||||
num_img_channels = image_shape[-1]
|
||||
self.max_num_filters = max_num_filters
|
||||
|
||||
# decoder layers
|
||||
num_filters_1 = max_num_filters
|
||||
num_filters_2 = max_num_filters // 2
|
||||
num_filters_3 = max_num_filters // 4
|
||||
|
||||
# divide the last two dimensions by 8 because of the 3 upsampling convolutions
|
||||
self.input_shape = [dimension // 8 for dimension in image_shape[:-1]] + [
|
||||
num_filters_1
|
||||
]
|
||||
flattened_dim = math.prod(self.input_shape)
|
||||
|
||||
# Output: flattened_dim
|
||||
self.lin1 = nn.Linear(num_latent_dims, flattened_dim)
|
||||
# Output (BHWC): B x 16 x 16 x num_filters_2
|
||||
self.upconv1 = UpsamplingConv2d(
|
||||
num_filters_1, num_filters_2, 3, stride=1, padding=1
|
||||
)
|
||||
# Output (BHWC): B x 32 x 32 x num_filters_1
|
||||
self.upconv2 = UpsamplingConv2d(
|
||||
num_filters_2, num_filters_3, 3, stride=1, padding=1
|
||||
)
|
||||
# Output (BHWC): B x 64 x 64 x #img_channels
|
||||
self.upconv3 = UpsamplingConv2d(
|
||||
num_filters_3, num_img_channels, 3, stride=1, padding=1
|
||||
)
|
||||
|
||||
# Batch Normalizations
|
||||
self.bn1 = nn.BatchNorm(num_filters_2)
|
||||
self.bn2 = nn.BatchNorm(num_filters_3)
|
||||
|
||||
def __call__(self, z):
|
||||
x = self.lin1(z)
|
||||
|
||||
# reshape to BHWC
|
||||
x = x.reshape(
|
||||
-1, self.input_shape[0], self.input_shape[1], self.max_num_filters
|
||||
)
|
||||
|
||||
# approximate transposed convolutions with nearest neighbor upsampling
|
||||
x = nn.leaky_relu(self.bn1(self.upconv1(x)))
|
||||
x = nn.leaky_relu(self.bn2(self.upconv2(x)))
|
||||
# sigmoid to ensure pixel values are in [0,1]
|
||||
x = mx.sigmoid(self.upconv3(x))
|
||||
return x
|
||||
|
||||
|
||||
class CVAE(nn.Module):
|
||||
"""
|
||||
A convolutional variational autoencoder consisting of an encoder and a
|
||||
decoder.
|
||||
"""
|
||||
|
||||
def __init__(self, num_latent_dims, input_shape, max_num_filters):
|
||||
super().__init__()
|
||||
self.num_latent_dims = num_latent_dims
|
||||
self.encoder = Encoder(num_latent_dims, input_shape, max_num_filters)
|
||||
self.decoder = Decoder(num_latent_dims, input_shape, max_num_filters)
|
||||
|
||||
def __call__(self, x):
|
||||
# image to latent vector
|
||||
z, mu, logvar = self.encoder(x)
|
||||
# latent vector to image
|
||||
x = self.decode(z)
|
||||
return x, mu, logvar
|
||||
|
||||
def encode(self, x):
|
||||
return self.encoder(x)[0]
|
||||
|
||||
def decode(self, z):
|
||||
return self.decoder(z)
|
||||
Reference in New Issue
Block a user