Update a few examples to use compile (#420)

* update a few examples to use compile

* update mnist

* add compile to vae and rename some stuff for simplicity

* update reqs

* use state in eval

* GCN example with RNG + dropout

* add a bit of prefetching
This commit is contained in:
Awni Hannun
2024-02-08 13:00:41 -08:00
committed by GitHub
parent da7adae5ec
commit f45a1ab83c
17 changed files with 164 additions and 118 deletions

View File

@@ -2,6 +2,7 @@
import argparse
import time
from functools import partial
import mlx.core as mx
import mlx.nn as nn
@@ -34,10 +35,6 @@ def loss_fn(model, X, y):
return nn.losses.cross_entropy(model(X), y, reduction="mean")
def eval_fn(model, X, y):
return mx.mean(mx.argmax(model(X), axis=1) == y)
def batch_iterate(batch_size, X, y):
perm = mx.array(np.random.permutation(y.size))
for s in range(0, y.size, batch_size):
@@ -65,16 +62,25 @@ def main(args):
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes)
mx.eval(model.parameters())
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
optimizer = optim.SGD(learning_rate=learning_rate)
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
@partial(mx.compile, inputs=model.state, outputs=model.state)
def step(X, y):
loss, grads = loss_and_grad_fn(model, X, y)
optimizer.update(model, grads)
return loss
@partial(mx.compile, inputs=model.state)
def eval_fn(X, y):
return mx.mean(mx.argmax(model(X), axis=1) == y)
for e in range(num_epochs):
tic = time.perf_counter()
for X, y in batch_iterate(batch_size, train_images, train_labels):
loss, grads = loss_and_grad_fn(model, X, y)
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
accuracy = eval_fn(model, test_images, test_labels)
step(X, y)
mx.eval(model.state)
accuracy = eval_fn(test_images, test_labels)
toc = time.perf_counter()
print(
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"

View File

@@ -1,2 +1,2 @@
mlx
numpy
mlx>=0.2
numpy