new set but still gibberish

This commit is contained in:
Goekdeniz-Guelmez 2024-12-27 15:27:09 +01:00
parent d044db959d
commit f4cbe27b0f

View File

@ -154,11 +154,13 @@ class Mamba2Block(nn.Module):
# Split conv output and reshape
x = x_conv[..., :self.d_inner]
# B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, -1, self.d_state))
# C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, -1, self.d_state))
# B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
# C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
# Reshape tensors for correct broadcasting
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, self.d_state // self.n_heads))
C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, self.d_state // self.n_heads))
# Reshape for SSM processing
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
@ -171,10 +173,15 @@ class Mamba2Block(nn.Module):
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
# Compute dA - simplified to match PyTorch
# A = -mx.exp(self.A_log)
# A = -mx.exp(self.A_log) * self.args.initializer_range
# dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
# dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
# SSM parameters calculation
A = -mx.exp(self.A_log) * self.args.initializer_range
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
A = mx.reshape(A, (1, 1, self.n_heads)) # [1, 1, n_heads]
dA = mx.exp(dt * A)
# Process sequence
next_state = prev_state
@ -188,23 +195,26 @@ class Mamba2Block(nn.Module):
dAt = dA[:, t] # [batch, n_heads]
# Compute dBx using einsum to match PyTorch
# dBx = mx.einsum('bh,bhd,bhp->bhpd', dAt, Bt, xt)
dBx = mx.einsum('bh,bhn,bhp->bhpn', dAt, Bt, xt)
dBx = mx.einsum('bh,bhd,bhp->bhpd', dAt, Bt, xt)
# Update state - matches PyTorch implementation
next_state = (
next_state * mx.expand_dims(dAt, axis=(-1, -2)) +
dBx
)
# next_state = (
# next_state * mx.expand_dims(dAt, axis=(-1, -2)) +
# dBx
# )
# Update state
dAt = mx.reshape(dAt, (batch_size, self.n_heads, 1, 1))
next_state = next_state * dAt + dBx
# Compute output
# yt = mx.einsum('bhpd,bhd->bhp', next_state, Ct)
yt = mx.einsum('bhpg,bgh->bhp', next_state, Ct)
yt = mx.einsum('bhpd,bhd->bhp', next_state, Ct)
yt = yt + xt * mx.expand_dims(self.D, -1)
# Reshape and normalize
yt = mx.reshape(yt, (batch_size, 1, self.d_inner))
yt = self.norm(yt, z[:, t:t+1])
yt = yt * (1.0 / math.sqrt(self.d_head))
outputs.append(self.out_proj(yt))
# Update cache
@ -228,6 +238,7 @@ class ResidualBlock(nn.Module):
output = self.mixer(normed, cache)
return output + x
class Mamba2(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()