Support for multiple EOS tokens

This commit is contained in:
madroid
2024-12-07 11:19:20 +08:00
parent 1727959a27
commit f8379fb3ef
2 changed files with 28 additions and 15 deletions

View File

@@ -350,7 +350,7 @@ def stream_generate(
prompt_time = time.perf_counter() - tic
prompt_tps = prompt.size / prompt_time
tic = time.perf_counter()
if token == tokenizer.eos_token_id:
if token in tokenizer.eos_token_ids:
break
detokenizer.add_token(token)
@@ -470,9 +470,6 @@ def load_model(
ValueError: If the model class or args class are not found or cannot be instantiated.
"""
config = load_config(model_path)
config.update(model_config)
weight_files = glob.glob(str(model_path / "model*.safetensors"))
if not weight_files:
@@ -487,15 +484,15 @@ def load_model(
for wf in weight_files:
weights.update(mx.load(wf))
model_class, model_args_class = get_model_classes(config=config)
model_class, model_args_class = get_model_classes(config=model_config)
model_args = model_args_class.from_dict(config)
model_args = model_args_class.from_dict(model_config)
model = model_class(model_args)
if hasattr(model, "sanitize"):
weights = model.sanitize(weights)
if (quantization := config.get("quantization", None)) is not None:
if (quantization := model_config.get("quantization", None)) is not None:
# Handle legacy models which may not have everything quantized
def class_predicate(p, m):
if not hasattr(m, "to_quantized"):
@@ -547,11 +544,15 @@ def load(
"""
model_path = get_model_path(path_or_hf_repo)
model = load_model(model_path, lazy, model_config)
config = load_config(model_path)
config.update(model_config)
model = load_model(model_path, lazy, config)
if adapter_path is not None:
model = load_adapters(model, adapter_path)
model.eval()
tokenizer = load_tokenizer(model_path, tokenizer_config)
tokenizer = load_tokenizer(model_path, tokenizer_config, model_config=config)
return model, tokenizer
@@ -559,9 +560,9 @@ def load(
def fetch_from_hub(
model_path: Path, lazy: bool = False
) -> Tuple[nn.Module, dict, PreTrainedTokenizer]:
model = load_model(model_path, lazy)
config = load_config(model_path)
tokenizer = load_tokenizer(model_path)
model = load_model(model_path, lazy, model_config=config)
tokenizer = load_tokenizer(model_path, model_config=config)
return model, config, tokenizer