mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 04:14:38 +08:00
chore(mlx-lm): fix the top_p implementation. (#602)
* chore(mlx-lm): clean up the top p imp * chore: clean up * chore: add test * chore: address comments * chore: clean up docs string * chore: clean up test
This commit is contained in:
39
llms/mlx_lm/sample_utils.py
Normal file
39
llms/mlx_lm/sample_utils.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array:
|
||||
"""
|
||||
Apply top-p (nucleus) sampling to logits.
|
||||
|
||||
Args:
|
||||
logits: The logits from the model's output.
|
||||
top_p: The cumulative probability threshold for top-p filtering.
|
||||
temperature: Temperature parameter for softmax distribution reshaping.
|
||||
Returns:
|
||||
token selected based on the top-p criterion.
|
||||
"""
|
||||
if (
|
||||
logits.dtype == mx.bfloat16
|
||||
): # workaround for unable to load kernel contiguous_scan_inclusive_sum_bfloat16_bfloat16
|
||||
logits = logits.astype(mx.float32)
|
||||
|
||||
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
|
||||
probs = mx.softmax(logits / temperature, axis=-1)
|
||||
|
||||
# sort probs in ascending order
|
||||
sorted_indices = mx.argsort(probs, axis=-1)
|
||||
sorted_probs = probs[..., sorted_indices]
|
||||
|
||||
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
|
||||
|
||||
# select tokens with cumulative probs below threshold
|
||||
top_probs = mx.where(
|
||||
cumulative_probs > 1 - top_p,
|
||||
sorted_probs,
|
||||
mx.zeros_like(sorted_probs),
|
||||
)
|
||||
|
||||
sorted_token = mx.random.categorical(mx.log(top_probs))
|
||||
token = sorted_indices.squeeze(0)[sorted_token]
|
||||
|
||||
return token
|
@@ -17,6 +17,8 @@ from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_flatten
|
||||
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
|
||||
|
||||
from .sample_utils import top_p_sampling
|
||||
|
||||
# Local imports
|
||||
from .tuner.utils import apply_lora_layers
|
||||
from .tuner.utils import dequantize as dequantize_model
|
||||
@@ -144,23 +146,7 @@ def generate_step(
|
||||
token = mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
if top_p > 0 and top_p < 1.0:
|
||||
if (
|
||||
logits.dtype == mx.bfloat16
|
||||
): # workdaround for unable to load kernel contiguous_scan_inclusive_sum_bfloat16_bfloat16
|
||||
logits = logits.astype(mx.float32)
|
||||
probs = mx.softmax(logits / temp, axis=-1)
|
||||
|
||||
sorted_probs = mx.sort(probs)[::-1]
|
||||
sorted_indices = mx.argsort(probs)[::-1]
|
||||
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
|
||||
|
||||
top_probs = mx.where(
|
||||
cumulative_probs > 1 - top_p,
|
||||
sorted_probs,
|
||||
mx.zeros_like(sorted_probs),
|
||||
)
|
||||
sorted_token = mx.random.categorical(mx.log(top_probs))
|
||||
token = sorted_indices.squeeze(0)[sorted_token]
|
||||
token = top_p_sampling(logits, top_p, temp)
|
||||
else:
|
||||
token = mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
|
Reference in New Issue
Block a user