chore(mlx-lm): fix the top_p implementation. (#602)

* chore(mlx-lm): clean up the top p imp

* chore: clean up

* chore: add test

* chore: address comments

* chore: clean up docs string

* chore: clean up test
This commit is contained in:
Anchen 2024-03-22 06:18:23 +11:00 committed by GitHub
parent fe96ef342f
commit fbed720d6f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 79 additions and 17 deletions

View File

@ -0,0 +1,39 @@
import mlx.core as mx
def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array:
"""
Apply top-p (nucleus) sampling to logits.
Args:
logits: The logits from the model's output.
top_p: The cumulative probability threshold for top-p filtering.
temperature: Temperature parameter for softmax distribution reshaping.
Returns:
token selected based on the top-p criterion.
"""
if (
logits.dtype == mx.bfloat16
): # workaround for unable to load kernel contiguous_scan_inclusive_sum_bfloat16_bfloat16
logits = logits.astype(mx.float32)
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
probs = mx.softmax(logits / temperature, axis=-1)
# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=-1)
sorted_probs = probs[..., sorted_indices]
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
# select tokens with cumulative probs below threshold
top_probs = mx.where(
cumulative_probs > 1 - top_p,
sorted_probs,
mx.zeros_like(sorted_probs),
)
sorted_token = mx.random.categorical(mx.log(top_probs))
token = sorted_indices.squeeze(0)[sorted_token]
return token

View File

@ -17,6 +17,8 @@ from huggingface_hub import snapshot_download
from mlx.utils import tree_flatten from mlx.utils import tree_flatten
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
from .sample_utils import top_p_sampling
# Local imports # Local imports
from .tuner.utils import apply_lora_layers from .tuner.utils import apply_lora_layers
from .tuner.utils import dequantize as dequantize_model from .tuner.utils import dequantize as dequantize_model
@ -144,23 +146,7 @@ def generate_step(
token = mx.argmax(logits, axis=-1) token = mx.argmax(logits, axis=-1)
else: else:
if top_p > 0 and top_p < 1.0: if top_p > 0 and top_p < 1.0:
if ( token = top_p_sampling(logits, top_p, temp)
logits.dtype == mx.bfloat16
): # workdaround for unable to load kernel contiguous_scan_inclusive_sum_bfloat16_bfloat16
logits = logits.astype(mx.float32)
probs = mx.softmax(logits / temp, axis=-1)
sorted_probs = mx.sort(probs)[::-1]
sorted_indices = mx.argsort(probs)[::-1]
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
top_probs = mx.where(
cumulative_probs > 1 - top_p,
sorted_probs,
mx.zeros_like(sorted_probs),
)
sorted_token = mx.random.categorical(mx.log(top_probs))
token = sorted_indices.squeeze(0)[sorted_token]
else: else:
token = mx.random.categorical(logits * (1 / temp)) token = mx.random.categorical(logits * (1 / temp))

View File

@ -0,0 +1,37 @@
import unittest
from unittest.mock import patch
import mlx.core as mx
from mlx_lm.sample_utils import top_p_sampling
class TestLora(unittest.TestCase):
@patch("mlx.core.random.categorical")
def test_top_p_sampling(self, mock_categorical):
logits = mx.array([[1.0, 2.0, 3.0, 4.0]])
top_p = 0.3
temperature = 1.0
expected_token = mx.array([3])
mock_categorical.return_value = expected_token
token = top_p_sampling(logits, top_p, temperature)
expected_top_probs = mx.array([[0.0, 0.0, 0.0, 0.643914]])
self.assertTrue(mx.allclose(token, expected_token))
args, _ = mock_categorical.call_args
self.assertTrue(mx.allclose(args[0], mx.log(expected_top_probs)))
logits = mx.array([[1.0, 2.0, 3.0, 4.0]])
top_p = 0.9
temperature = 1.0
expected_token = mx.array([3])
mock_categorical.return_value = expected_token
token = top_p_sampling(logits, top_p, temperature)
expected_top_probs = mx.array([[0.0, 0.0871443, 0.236883, 0.643914]])
self.assertTrue(mx.allclose(token, expected_token))
args, _ = mock_categorical.call_args
self.assertTrue(mx.allclose(args[0], mx.log(expected_top_probs)))
if __name__ == "__main__":
unittest.main()