mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
feat(mlx_lm): Nemotron (#949)
* feat: Nemotron https://huggingface.co/nvidia/Minitron-4B-Base This is basically Llama with partial RoPE and LayerNorm instead of BatchNorm. Also they add 1 to the LayerNorm weight for some reason. * fixup! feat: Nemotron * nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
b1186e2a81
commit
fc93c55723
227
llms/mlx_lm/models/nemotron.py
Normal file
227
llms/mlx_lm/models/nemotron.py
Normal file
@ -0,0 +1,227 @@
|
|||||||
|
# Copyright © 2024 Apple Inc.
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from functools import partial
|
||||||
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
|
||||||
|
from .base import BaseModelArgs, KVCache, create_attention_mask
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs(BaseModelArgs):
|
||||||
|
model_type: str
|
||||||
|
hidden_size: int
|
||||||
|
hidden_act: str
|
||||||
|
num_hidden_layers: int
|
||||||
|
intermediate_size: int
|
||||||
|
num_attention_heads: int
|
||||||
|
norm_eps: float
|
||||||
|
vocab_size: int
|
||||||
|
num_key_value_heads: int
|
||||||
|
head_dim: Optional[int] = None
|
||||||
|
max_position_embeddings: Optional[int] = None
|
||||||
|
attention_bias: bool = False
|
||||||
|
mlp_bias: bool = False
|
||||||
|
partial_rotary_factor: float = 0.5
|
||||||
|
rope_theta: float = 10000.0
|
||||||
|
rope_traditional: bool = False
|
||||||
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||||
|
tie_word_embeddings: bool = False
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.rope_scaling:
|
||||||
|
if not "factor" in self.rope_scaling:
|
||||||
|
raise ValueError(f"rope_scaling must contain 'factor'")
|
||||||
|
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
|
||||||
|
"rope_type"
|
||||||
|
)
|
||||||
|
if rope_type is None:
|
||||||
|
raise ValueError(
|
||||||
|
f"rope_scaling must contain either 'type' or 'rope_type'"
|
||||||
|
)
|
||||||
|
if rope_type not in ["linear"]:
|
||||||
|
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||||
|
|
||||||
|
|
||||||
|
@partial(mx.compile, shapeless=True)
|
||||||
|
def relu_squared(x):
|
||||||
|
return nn.relu(x).square()
|
||||||
|
|
||||||
|
|
||||||
|
class NemotronLayerNorm1P(nn.LayerNorm):
|
||||||
|
def __call__(self, x):
|
||||||
|
weight = self.weight + 1 if "weight" in self else None
|
||||||
|
bias = self.bias if "bias" in self else None
|
||||||
|
return mx.fast.layer_norm(x, weight, bias, self.eps)
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
dim = args.hidden_size
|
||||||
|
self.n_heads = n_heads = args.num_attention_heads
|
||||||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||||
|
|
||||||
|
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
|
||||||
|
self.partial_rotary_factor = args.partial_rotary_factor
|
||||||
|
|
||||||
|
self.scale = head_dim**-0.5
|
||||||
|
if hasattr(args, "attention_bias"):
|
||||||
|
attention_bias = args.attention_bias
|
||||||
|
else:
|
||||||
|
attention_bias = False
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
|
||||||
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
|
||||||
|
|
||||||
|
rope_scale = 1.0
|
||||||
|
if args.rope_scaling and args.rope_scaling["type"] == "linear":
|
||||||
|
assert isinstance(args.rope_scaling["factor"], float)
|
||||||
|
rope_scale = 1 / args.rope_scaling["factor"]
|
||||||
|
self.rope = nn.RoPE(
|
||||||
|
int(self.partial_rotary_factor * self.head_dim),
|
||||||
|
base=args.rope_theta,
|
||||||
|
scale=rope_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[KVCache] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
B, L, _ = x.shape
|
||||||
|
|
||||||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
|
|
||||||
|
# Prepare the queries, keys and values for the attention computation
|
||||||
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
if cache is not None:
|
||||||
|
queries = self.rope(queries, offset=cache.offset)
|
||||||
|
keys = self.rope(keys, offset=cache.offset)
|
||||||
|
keys, values = cache.update_and_fetch(keys, values)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
|
||||||
|
output = mx.fast.scaled_dot_product_attention(
|
||||||
|
queries, keys, values, scale=self.scale, mask=mask
|
||||||
|
)
|
||||||
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
return self.o_proj(output)
|
||||||
|
|
||||||
|
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
dim = args.hidden_size
|
||||||
|
hidden_dim = args.intermediate_size
|
||||||
|
mlp_bias = args.mlp_bias
|
||||||
|
|
||||||
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
|
||||||
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
||||||
|
|
||||||
|
def __call__(self, x) -> mx.array:
|
||||||
|
return self.down_proj(relu_squared(self.up_proj(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.num_attention_heads = args.num_attention_heads
|
||||||
|
self.hidden_size = args.hidden_size
|
||||||
|
self.self_attn = Attention(args)
|
||||||
|
self.mlp = MLP(args)
|
||||||
|
self.input_layernorm = NemotronLayerNorm1P(args.hidden_size, eps=args.norm_eps)
|
||||||
|
self.post_attention_layernorm = NemotronLayerNorm1P(
|
||||||
|
args.hidden_size, eps=args.norm_eps
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[KVCache] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||||
|
h = x + r
|
||||||
|
r = self.mlp(self.post_attention_layernorm(h))
|
||||||
|
out = h + r
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class NemotronModel(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
self.num_hidden_layers = args.num_hidden_layers
|
||||||
|
assert self.vocab_size > 0
|
||||||
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
|
self.layers = [
|
||||||
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||||
|
]
|
||||||
|
self.norm = NemotronLayerNorm1P(args.hidden_size, eps=args.norm_eps)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
):
|
||||||
|
h = self.embed_tokens(inputs)
|
||||||
|
|
||||||
|
mask = create_attention_mask(h, cache)
|
||||||
|
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
|
for layer, c in zip(self.layers, cache):
|
||||||
|
h = layer(h, mask, cache=c)
|
||||||
|
|
||||||
|
return self.norm(h)
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.model_type = args.model_type
|
||||||
|
self.model = NemotronModel(args)
|
||||||
|
if not args.tie_word_embeddings:
|
||||||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
):
|
||||||
|
out = self.model(inputs, cache)
|
||||||
|
if self.args.tie_word_embeddings:
|
||||||
|
out = self.model.embed_tokens.as_linear(out)
|
||||||
|
else:
|
||||||
|
out = self.lm_head(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
@property
|
||||||
|
def layers(self):
|
||||||
|
return self.model.layers
|
||||||
|
|
||||||
|
@property
|
||||||
|
def head_dim(self):
|
||||||
|
return (
|
||||||
|
self.args.head_dim or self.args.hidden_size // self.args.num_attention_heads
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def n_kv_heads(self):
|
||||||
|
return self.args.num_key_value_heads
|
@ -93,6 +93,7 @@ def linear_to_lora_layers(
|
|||||||
"llama",
|
"llama",
|
||||||
"phi",
|
"phi",
|
||||||
"mixtral",
|
"mixtral",
|
||||||
|
"nemotron",
|
||||||
"stablelm",
|
"stablelm",
|
||||||
"qwen2",
|
"qwen2",
|
||||||
"qwen2_moe",
|
"qwen2_moe",
|
||||||
|
Loading…
Reference in New Issue
Block a user