diff --git a/whisper/README.md b/whisper/README.md index 7df1382f..9f1d777a 100644 --- a/whisper/README.md +++ b/whisper/README.md @@ -6,7 +6,7 @@ parameters[^1]. ### Setup -First, install the dependencies. +First, install the dependencies: ``` pip install -r requirements.txt @@ -19,6 +19,27 @@ Install [`ffmpeg`](https://ffmpeg.org/): brew install ffmpeg ``` +Next, download the Whisper PyTorch checkpoint and convert the weights to MLX format: + +``` +# Take the "tiny" model as an example. Note that you can also convert a local PyTorch checkpoint in OpenAI's format. +python convert.py --torch-name-or-path tiny --mlx-path mlx_models/tiny +``` + +To generate a 4-bit quantized model, use ``-q`` for a full list of options: + +``` +python convert.py --help +``` + +By default, the conversion script will make the directory `mlx_models/tiny` and save +the converted `weights.npz` and `config.json` there. + +> [!TIP] +> Alternatively, you can also download a few converted checkpoints from the +> [MLX Community](https://huggingface.co/mlx-community) organization on Hugging +> Face and skip the conversion step. + ### Run Transcribe audio with: