This commit is contained in:
Goekdeniz-Guelmez 2025-03-04 21:24:13 +01:00
parent bbde6ea4bc
commit fd63c68280

View File

@ -76,16 +76,12 @@ class Attention(nn.Module):
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = self.q_norm(queries)
keys = self.k_norm(keys)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
@ -93,11 +89,9 @@ class Attention(nn.Module):
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
@ -123,32 +117,17 @@ class OlmoeSparseMoeBlock(nn.Module):
self.experts = [MLP(args) for _ in range(self.num_experts)]
def __call__(self, x: mx.array) -> mx.array:
batch_size, sequence_length, hidden_dim = x.shape
x = x.reshape(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
B, L, D = x.shape
x = x.reshape(-1, D)
router_logits = self.gate(x)
# Compute routing weights with softmax
routing_weights = mx.softmax(router_logits, axis=1, precise=True)
# Initialize output tensor
final_hidden_states = mx.zeros_like(x)
# Process each token through all experts, weighted by routing weights
for expert_idx in range(self.num_experts):
# Get the weight for this expert for all tokens
expert_weights = routing_weights[:, expert_idx:expert_idx+1]
# Only process if any weight is significant
if mx.max(expert_weights) > 1e-5:
# Apply expert to all tokens
expert_output = self.experts[expert_idx](x)
# Weight the output and add to final result
final_hidden_states += expert_output * expert_weights
return final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states.reshape(B, L, D)
class TransformerBlock(nn.Module):
@ -190,16 +169,12 @@ class OlmoeModel(nn.Module):
mask=None,
):
h = self.embed_tokens(inputs)
if mask is None:
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, cache=c)
return self.norm(h)
@ -224,9 +199,8 @@ class Model(nn.Module):
else:
out = self.lm_head(out)
return out
def sanitize(self, weights):
# Remove unused precomputed rotary freqs
return {
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
}