diff --git a/llms/mlx_lm/models/olmoe.py b/llms/mlx_lm/models/olmoe.py index 6352ab93..f0ce097a 100644 --- a/llms/mlx_lm/models/olmoe.py +++ b/llms/mlx_lm/models/olmoe.py @@ -76,16 +76,12 @@ class Attention(nn.Module): cache: Optional[Any] = None, ) -> mx.array: B, L, D = x.shape - queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) queries = self.q_norm(queries) keys = self.k_norm(keys) - - # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) - if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) @@ -93,11 +89,9 @@ class Attention(nn.Module): else: queries = self.rope(queries) keys = self.rope(keys) - output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) - output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) @@ -123,32 +117,17 @@ class OlmoeSparseMoeBlock(nn.Module): self.experts = [MLP(args) for _ in range(self.num_experts)] def __call__(self, x: mx.array) -> mx.array: - batch_size, sequence_length, hidden_dim = x.shape - x = x.reshape(-1, hidden_dim) - - # router_logits: (batch * sequence_length, n_experts) + B, L, D = x.shape + x = x.reshape(-1, D) router_logits = self.gate(x) - - # Compute routing weights with softmax routing_weights = mx.softmax(router_logits, axis=1, precise=True) - - # Initialize output tensor final_hidden_states = mx.zeros_like(x) - - # Process each token through all experts, weighted by routing weights for expert_idx in range(self.num_experts): - # Get the weight for this expert for all tokens expert_weights = routing_weights[:, expert_idx:expert_idx+1] - - # Only process if any weight is significant if mx.max(expert_weights) > 1e-5: - # Apply expert to all tokens expert_output = self.experts[expert_idx](x) - - # Weight the output and add to final result final_hidden_states += expert_output * expert_weights - - return final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) + return final_hidden_states.reshape(B, L, D) class TransformerBlock(nn.Module): @@ -190,16 +169,12 @@ class OlmoeModel(nn.Module): mask=None, ): h = self.embed_tokens(inputs) - if mask is None: mask = create_attention_mask(h, cache) - if cache is None: cache = [None] * len(self.layers) - for layer, c in zip(self.layers, cache): h = layer(h, mask, cache=c) - return self.norm(h) @@ -224,9 +199,8 @@ class Model(nn.Module): else: out = self.lm_head(out) return out - + def sanitize(self, weights): - # Remove unused precomputed rotary freqs return { k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k }